拉格朗日乘数法的应用举例

如题所述

第1个回答  2016-05-12

抛物面被平面 截成一个椭圆. 求该椭圆到坐标
原点的最长和最短距离.
例3求函数 在条件
下的极小值. 并证明不等式 , 其中 为任意正常数 .
以上面水箱设计为例,看一看拉格朗日乘数法求解条件极值的过程
解: 这个问题的实质是求函数
在条件下的最小值问题, 应用拉格朗日乘法,令
L='2*(x*z+y*z)+x*y+v*(x*y*z-V)';
dLdx=diff(L,'x')
dLdy=diff(L,'y')
dLdz=diff(L,'z')
dLdv=diff(L,'v')
dLdx =2*z+y+v*y*z
dLdy =2*z+x+v*x*z
dLdz =2*x+2*y+v*x*y
dLdv =x*y*z-V
令 L 的各偏导等零,解方程组求稳定点
s1='2*z+y+v*y*z';
s2='2*z+x+v*x*z';
s3='2*x+2*y+v*x*y';
s4='x*y*z-V';
[v,x0,y0,z0]=solve(s1,s2,s3,s4)
v =
[ -2*2^(2/3)/V^(1/3)]
[ -8*(-1/4*2^(1/3)*V^(1/3)+1/4*i*3^(1/2)*2^(1/3)*V^(1/3))^2/V]
[ -8*(-1/4*2^(1/3)*V^(1/3)-1/4*i*3^(1/2)*2^(1/3)*V^(1/3))^2/V]
x0 =[ 2^(1/3)*V^(1/3)]
y0 =[ 2^(1/3)*V^(1/3)]
z0 =[ 1/2*2^(1/3)*V^(1/3)]
这里显然只有实数解才有意义,所以 L 的稳定点只有下面一个
又已知所求的问题确实存在最小值,从而解出的稳定点就是最小值点,即水箱长宽与为高的2倍时用钢板最省。 再看一个条件极值求解问题
抛物面 被平面 截成一个椭圆,求这个椭圆到坐标原点的最长最短距离。(x73)
解 这个问题的实质是求函数
在条件 与 下的最大、最小值问题,应用拉格朗日乘法,令
L='x^2+y^2+z^2+v*(x^2+y^2-z)+h*(x+y+z-1)';
dLdx=diff(L,'x')
dLdy=diff(L,'y')
dLdz=diff(L,'z')
dLdv=diff(L,'v')
dLdh=diff(L,'h')
dLdx =2*x+2*v*x+h
dLdy =2*y+2*v*y+h
dLdz =2*z-v+h
dLdv =x^2+y^2-z
dLdh =x+y+z-1
s1='2*x+2*v*x+h';
s2='2*y+2*v*y+h';
s3='2*z-v+h';
s4='x^2+y^2-z';
s5='x+y+z-1';
[h,v,x0,y0,z0]=solve(s1,s2,s3,s4,s5);
x0,y0,z0
x0 =
[ 3/4-1/4*i*13^(1/2)]
[ 3/4+1/4*i*13^(1/2)]
[ -1/2+1/2*3^(1/2)]
[ -1/2-1/2*3^(1/2)]
y0 =
[ 3/4+1/4*i*13^(1/2)]
[ 3/4-1/4*i*13^(1/2)]
[ -1/2+1/2*3^(1/2)]
[ -1/2-1/2*3^(1/2)]
z0 = -1/2, -1/2, 2-3^(1/2), 2+3^(1/2)
即 的稳定点有两个
因为函数 在有界闭集 上连续,必有最大值和最小值,而求得的稳定点又恰是两个,所以它们一个是最大点,另一个是最小,其最大
最小值为。(x73)
x1=-1/2+1/2*3^(1/2);
x2=-1/2-1/2*3^(1/2);
y1=-1/2+1/2*3^(1/2);
y2=-1/2-1/2*3^(1/2);
z1=2-3^(1/2);
z2=2+3^(1/2);
f1=(x1^2+y1^2+z1^2)^(1/2)
f2=(x2^2+y2^2+z2^2)^(1/2)
f1 = 0.5829 ; f2 = 4.2024 求此方程的最大值:

同时未知数满足:

因为只有一个未知数的限制条件,我们只需要用一个乘数 .


将所有方程的偏微分设为零,得到一个方程组,最大值是以下方程组的解中的一个:


相似回答