设函数f(x)在区间[0,1]上连续,在(0,1)内可导,f(0)=0,|f(x)导数|<=|f(x)|,证明在[0,1]上f(x)恒等于0

如题所述

第1个回答  2013-03-14
证明,|f(x)导数|<=|f(x)|,-f(x)<=f'(x)<=f(x),拉格拉日定理,得出 -f(x)<=f(x)/x<=f(x),不妨考虑x>0,小于0同理。两边同乘x,-f(x)*x<=f(x)<=f(x)*x,(1+x)*f(x)>=0,因1>x>0显然f(x)>=o,右边,(1-x)*f(x)<=0,x<1,显然只有f(x)<=0,故f(x)=0;,x小于0同理可得。追问

-f(x)<=f'(x)<=f(x),拉格拉日定理,得出 -f(x)<=f(x)/x<=f(x)这个是什么意思

追答

f'(x)=[f(x)-f(0)]/(x-0)=f(x)/x,这就是拉格朗日定理

追问

非常感谢

相似回答