宇宙中最高的温度是多少?最低温度是多少度?

如题所述

宇宙中最高的温度是多少?最低温度是多少度?

最高温度和最低温度都只是理论上的一个数据。

这个数据就是普朗克温度和绝对零度。量子力学认为,宇宙最高温度为10^32K,也就是亿亿亿亿K。这个“K”代表开氏度,就是热力学温度,如果与“ ”(摄氏度)比较,0 K(是零K,不是OK)就相当于-273.15 ,这就是绝对零度;而100 则为373.15K。也就是说开氏度减掉273.15就是摄氏度。

普朗克温度和绝对零度都只是一个理论存在的温度,也是人类能够理解的最高温度和最低温度,高于这个温度和低于这个温度都没有意义。量子力学认为,在宇宙大爆炸的普朗克时间,也就是大爆炸开始的10^-43秒,1000亿亿亿亿亿分之一秒时,其温度为普朗克温度,即10^32K,这以后,宇宙渐渐冷却,再也没有出现过这个温度。

而绝对零度,是热力学的最低温度,是粒子动能低到量子力学最低点时物质的温度,是存在于理论中的下限值。我们知道,物质的温度取决于其内部原子、分子等粒子的平均动能,一个物体粒子动能越高,温度就越高,当粒子动能达到最低点,不能再低时,就是绝对零度。

根据热力学第三定律,绝对零度永远也无法达到,因为一个绝对零度的空间,完全没有粒子振动,而空间的存在是以物质为前提的,没有物质也就没有空间,因此绝对零度的空间为零,零空间就是虚无。

目前人类观测到的最高温度。

恒星中心一直在源源不断爆发着核聚变,而恒星是宇宙的主要可见物质,占可见质量的99%以上。恒星表面温度从几千K到数万K,乃至数十万K不等,中子星表面温度可达1000亿K。质量越大的恒星,温度就越高,恒星中心温度也是如此。

太阳这样的恒星,中心温度只有1500万K,但到了演化后期,激发氦核聚变的温度需要1亿K。比太阳质量大的恒星,核聚变不断上升到更高层次,也就是按照元素周期表的排列序数,从氢核聚变,经历氦、碳、氧、氖、钠、铝、镁、硅、硫、氩气、钙、钛、铬、锰等一路演化,一直到26号元素铁结束。每一层次核聚变结束,恒星就会向中心坍缩,从而形成更高压力和温度,激发更高层次的核聚变。大质量恒星核心温度可以高达30亿K,从而完成铁元素之前的所有核聚变,在核心聚合成一个铁核。

比太阳质量大8倍的恒星就可以完成这一系列的核聚变,最终发生超新星大爆发,爆发的温度可以达到几百亿甚至上千亿K,从而完成比铁更重元素的合成。但这还不是目前宇宙能够得到的最高温度,更高温度是伽马射线暴创造的。

伽马射线暴是超大质量恒星爆发、黑洞或中子星相撞等极端事件中形成的,最强能量的伽玛暴比超新星爆发能量还要强数百倍,可以再现宇宙大爆炸1/1000秒时万亿度高温。这可能是迄今可能观测到的宇宙自然界最高温度了。

但目前已知存在的最高温度是人类制造出来的。2010年11月8日,科学家们利用位于瑞士和法国边境的欧洲大型强子对撞机,模拟138亿年前宇宙大爆炸的瞬时过程。这次实验是用两束铅离子束,在27千米的地下环形轨道中以相反速度加速,当它们接近光速时让它们相撞,相撞的瞬间产生了10万亿K的高温,再现了宇宙大爆炸百万分之几秒的场景,从而可以观察这一温度下产生“夸克—胶子等离子体”的过程,印证宇宙大爆炸理论预测。

尽管这个温度只存在一瞬,但却被精密仪器记录下来。这是迄今为止人类观测到存在于现实世界的最高温度。

人类制造出的宇宙最低温度。

宇宙最低温度迄今也是人类在实验室制造出来的,是NASA科学家团队在国际空间站上创造出来的。他们在地面做观测冷原子实验时,由于地球重力影响,得到极低温度冷原子态只能观测到几分之一秒,瞬间就消失了。于是他们将冷原子实验室(CAL)送到国际空间站,在微重力环境,创造出了更低温度,冷原子云固定观测时间可达到10秒,成为至今被观测最长时间的玻色-爱因斯坦凝聚态。

这是迄今人类创造的最低温度,为-273.149999999999 ,即0.000000000001K,就是万亿分之一K。

此前人造最低温度也是科学家在实验室创造的,达到0.00000017K。后来科学家们又把这个温度降低到0.5nK(纳开),就是0.0000000005K。这是一个由德国、美国、奥地利等国科学家组成的科研小组,利用磁阱技术实现铯原子的玻色-爱因斯坦凝聚态(BEC)的实验过程中,创造这一纪录的。

广袤的宇宙空间温度极低,在远离天体的空旷处,温度低到3K以下。这是宇宙大爆炸后经历138亿年冷却的残留热辐射,通俗地说就是残留余烬,这种残留电磁辐射充满整个宇宙,温度只有2.725K,因此又称为3K宇宙背景辐射。

但这并不是宇宙自然界最低温度。1979年,科学家们发现距离我们约5000光年,位于半人马座方位有一个领结状的原行星云,命名为布莫让星云,又叫回力棒星云,科学家们通过用各种射线望远镜探测表明,那里的温度低到1K,是迄今发现自然界存在的最低温度。

现在还有一种说法,认为在宇宙大尺度网状结构之间,有许多被称为“空洞”的冷斑点,有的空洞尺度达到数十上百亿光年,那里面没有星系,也没有暗物质,形成的原因有多种说法,有科学家认为这种空洞里的温度更低,不过至今还没有严谨数据支撑,无法定论。

小结:目前已知的最高温度为10万亿K,最低温度为万亿分之一K,这些温度都是人工制造出来的。

为了解答这几个问题,首先要了解一下温度的本质。表面上,温度表征物体的冷热程度。本质上,温度表征物体的组成粒子的热运动剧烈程度。

物质可能的最低温度

理论上,当所有的粒子停止运动时(处于量子力学的最低点),物体将会达到可能的最低温度,即绝对零度。绝对零度在开氏温标上表示为0 K,在摄氏温标上表示为-273.15 。

然而,为了达到绝对零度,不仅需要原子停止运动,而且还包括原子的所有组成。绕原子核运动的电子需要停止运动,原子核中的质子和中子需要停止相互作用,夸克以及任何更基本的结构都要停止活动。由于量子力学效应,这是不可能的,所以绝对零度无法达到。从另一方面看,任何空间中都存在能量和热量,必然会与物质进行交换,所以绝对零度只能无限逼近,不可能达到。

目前,通过激光冷却和磁蒸发冷却技术,科学家获得的最低温度达到了100 pK(10^-10 K, 273.149999999900 )。物质在这种极低的温度下将处于玻色-爱因斯坦凝聚态,它们会表现出奇特的行为,例如,超流动性和超导现象。

物质可能的最高温度

物质可能的最高温度为普朗克温度,其值约为1.417 10^32 K。由于粒子的运动速度上限为光速,所以当粒子速度接近光速时,物体的温度接近普朗克温度。如果温度超过普朗克温度,物理定律将不复存在。

目前,通过大型强子对撞机的粒子对撞实验,科学家获得的最高温度为10万亿开尔文,尽管这个温度比太阳的中心温度高了60万倍,但仅为普朗克温度的一千亿亿分之一。

首先,温度简单来说与微观粒子运动的速度息息相关,微观粒子运动越距离,物体的温度就越高。根据不确定性原理,任何粒子的运动不可能停下来,所以温度有一个下限,我们都知道那是绝对零度,也就是大约领下273摄氏度。而任何微观粒子的运动速度都不可能超越光速,所以物体的温度也有上限,不可能无限高,上限就是普朗克温度,大约1.4乘以10的32次方K。

普朗克温度是根据现有物理学计算出来的理论值,它是宇宙大爆炸发生一个普朗克时间后的温度,一个普朗克时间非常短,大约5.4乘以10的负44次方秒,也是物理学上可测量的最小时间单位,任何小于普朗克时间的时间都没有意义,而我们对宇宙的认知也是从大爆炸发生后一个普朗克时间开始的,也可以认为一个普朗克时间之前的宇宙没有意义。

那么目前已知的宇宙中最高温度是多少呢?超乎我们的想象!

太阳的核心温度能达到1500万摄氏度,这样的高温已经让很多人惊叹不已,甚至无法想象。但太阳的核心温度与中子星碰撞时产生的温度相比简直太渺小了,这个温度能达到3500亿摄氏度,敢想象吗?

目前人类能制造出来的最高温度是在大型强子对撞机里产生的,微观粒子的撞击能产生高达10万亿度的高温,不要担心如此高温会把对撞机熔化,那只是微观层面粒子的运动速度的体现形式,因为碰撞时的粒子速度都接近光速。而且碰撞是一瞬间的,不会有任何影响。

温馨提示:答案为网友推荐,仅供参考
相似回答