设函数f(x)在区间[0,1]上连续,证明至少存在一点ξ属于(0,1)使得 f(ξ)(1-ξ)=∫(0

设函数f(x)在区间[0,1]上连续,证明至少存在一点ξ属于(0,1)使得 f(ξ)(1-ξ)=∫(0~ξ)f(x)dx

这个题用积分中值定理比较困难, 不妨换个角度用微分中值定理.
如果设F(x) = ∫<0,x> f(t)dt, 则所证式可变为(1-ξ)F'(ξ) = F(ξ), 是一道比较常见的微分中值定理的题目.
由此观察, 我们给出证明如下.
设g(x) = (x-1)*∫<0,x> f(t)dt, 则g(x)在[0,1]连续, 在(0,1)可导, 并有g(0) = g(1) = 0.
罗尔中值定理, 存在ξ∈(0,1), 使g'(ξ) = 0.
即有(ξ-1)f(ξ)+∫<0,ξ> f(t)dt = 0, 于是(1-ξ)f(ξ) = ∫<0,ξ> f(t)dt得证.
温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-12-23
我感觉你的题目是不是有点问题,我个人认为这个就是定积分的中值定理,具体你可以百度下,题目应该是:f(ξ)(1-ξ)=∫(ξ:1)f(x)dx 积分区间应该是[ξ,1]才对。证明的话就是利用定积分的中值定理。
相似回答