河鲀毒素的物化性质

如题所述

河鲀毒素(tetradotoxin,简写为TTX)系小分子量非蛋白质神经毒素,中毒潜伏期短,死亡率高,毒素吸收后迅速作用于末梢神经和中枢神经系统,使神经传导产生障碍,首先感觉神经麻痹,而后运动神经麻痹,严重者脑干麻痹导致呼吸循环衰竭。河鲀的表皮、内脏、血液、睾丸、卵巢、肝、脾、眼球等不同组织中含有河鲀毒素(tetrodotoxin,TTX),它是一种剧毒的非蛋白神经毒素。其分子式为C11H17O8N3,分子量为319,该神经毒素经腹腔注射对小鼠的LD50为8μg/kg。TTX的化学性质稳定,一般烹调手段难以破坏。
河鲀毒素是一种重要的天然毒素。1909年日本学者田原纯首先从河鲀鱼中发现,并定名Tetrodotoxino 1950年-1957年间,横尾晃、津田藤介等人首先从红鳍东方鲀,紫色东方鲀卵巢中独立地分离到了结晶态的河鲀毒素。其为无臭、易潮解的白色结晶体。该毒素结构的测定由Woodward(哈佛大学)、平田和后藤(名古屋大学)及津田小组(东京大学一三共中央研究所)等分别完成。1964年在京都召开的国际天然产物化学会议上同时报告了TTX的正确结构,是一种分子量不大,但结构很复杂的笼形原酸酯类生物碱,分子中几乎所有的碳原子均有不对称取代。因此它也被称为“自然界最奇特的分子之一”。
TTX是一种氨基全氢喹唑啉(Aminoperhydroquinazoline)型化合物,为白色结晶,无臭无味,微溶于水,不溶于有机溶剂;对酸作用稳定,对碱极不稳定;没有确定熔点,220℃以上炭化。TTX的结构特征是有1个碳环,1个胍基,6个羟基,在C-5和C-10位有一个半醛糖内酯连接着的分开的环。在胰液酶、唾液淀粉酶、乳化酶、糖转化酶等酶类存在下不分解。只溶于酸性水或醇溶液,在碱水溶液中易分解,在5%氢氧化钾溶液中于90-100℃下可分解成黄色结晶2-氨基-羟甲基-8-羟基-喹唑啉。它是相当特殊的一种有机化合物,分子内的胍基与氮原子是质子化的,正羰酸也离解为阴离子,所以河鲀毒素是以内盐形式存在。在室温下用50 g/L的氢氧化钡处理河鲀毒素可得脱水河鲀毒素—由pKa1值为2.5的羧基和pKa2值为10.9的胍基组成的两性离子化合物,其可在水中与一分子的溴完全反应产生河鲀酸。河鲀毒素在酸中也能部分异构化为脱水表河鲀毒素,从而影响对河鲀毒素的提取纯度。所以,河鲀毒素制剂经过长时间放置可降解。至于河鲀酸是否具备毒性尚有争议。因此,在生物代谢过程中,脱水和脱氧过程会降低毒性,而加氧机制能够使毒性增强。
毒素结构式图册参考资料。
在河鲀鱼中,河鲀毒素与其同系物是同时存在的。 河鲀毒素的同系物种类较多,从河鲀、纽虫、两栖类等生物体内分离得到的同系物包括:4-epiTTX,6-epiTTX,11-deoxyTTX,11-deoxy-4-epiTTX,11-norTTX-6(R)-ol,11-norTTX-6(S)-ol,11-norTTX-6,6-diol,4,9-anhydroTTX,11-oxoTTX,4,9-anhydro-4-epiTTX,4,9-anhydro-11-deoxyTTX,5-deoxyTTX,tetrodonicacid,4,9-anhydro-6-epi-TTX、5,6,11-trideoxyTTX、4-CysTTX等。 这些同系物可能与河鲀毒素的代谢或生物合成有关。在河鲀毒素的同系物中,5-deoxyTTX、5,6,11-trideoxyTTX、4-CysTTX、4,9-anhydroTTX、4,9-anhydro-6-epi-TTX、河鲀酸等同系物的毒性较低,甚至无毒,而11-oxoTTX虽比较罕见,其毒性却是TTX的4-5倍。 它们与河鲀毒素性质相似,有一定的生理活性,如:河鲀毒素的小鼠LD50为10μg/kg,6-表河鲀毒素为60μg/kg,11-去氧河鲀毒素为71μg/kg。
合成示意图图册参考资料。 TTX具有镇痛、降压、抗心律失常、局麻、戒毒及抑瘤的功效。对河鲀毒素的提取分离研究首先是晶化问题。自从田原于1909年首次分离到TTX的粗素以来,经过了40年,直到横尾(1950)、津田(1952)、荒川(1956)、平田(1957)等人,才分离出TTX结晶,其分离方法分别为:横尾法(氧化铝柱层析),津田—河村法(圆形滤纸层析法),津田—河村大规模生产法(活性炭层析法),平田—后藤法(离子交换树脂—活性炭吸附法)等。通常TTX的提取步骤是:河鲀卵巢—水提取—除蛋白质—离子交换—脱色—活性炭吸附—浓缩—精制—结晶。现代分离河毒素多采用层析法,其具体方法如下:首先,把富含毒素的样品绞碎,与含1%醋酸的甲醇液一起匀浆以抽提河毒素,匀浆液经5000-6000r/min,离心10-15min,沉淀物再用以上方法重复两次。合并上清液,减压浓缩,并用氯仿除去脂肪。之后经过冷冻干燥或再减压浓缩,浓缩液经Bio-Gel-P2或CM-Sephadex C-25(NH4+)或Amberlite IRC-50(NH4+)层析,用0.1-0.4 mol/L醋酸洗脱,合并有毒成分,浓缩后再经Bio-Rex70(H+)层析,以0.1-0.3mol/L醋酸洗脱,然后再重复一次,Bio-Rex70(H+)柱层硒,即可得到纯度非常高的样品。
日本人田原最早制得的TTX,纯度只有0.2%,半数致死量LD50为4.1mg/kg;横尾用磷钨酸、苦味酸汞、苯肼、苦味酸汞和苦酮酸等依次处理,得到的粗毒素的LD50为800μg/kg;此后,横尾又采用氧化铝柱直接过滤的方法制备,得到的TTX的LD50为13μg/kg。中国于1958年开始进行TTX的提取分离工作。陈成添等采用热甲醇法、微火煮沸法、沸水浴法对河鲀混合卵和混合肝的毒素进行提取,结果显示,用这三种方法提取的混合卵毒力的均值分别为:热甲醇法1524,微火煮沸法2518,沸水浴法2491。微火煮沸法和沸水浴法提取效果较佳,热甲醇法较差。杨春等以含毒量低的棕斑腹刺鲀为对象,研究以甲醇、乙醇、乙酸、水等4种溶剂提取TTX,结果发现乙酸的提取效果最好。 林文銮等提出用甲醇乙酸法提取TTX较完全,以活性炭脱色纯化的效果最好,但毒力有一定的损失。 李世平等以离心法取代传统过滤法,并用减压浓缩法去除提取液中的乙醚,改进了乙酸提取法,提高了得率。TTX的分离和提取大多采用离子交换、活性炭柱层析及凝胶柱层析、吸附树脂等方法。津田一河村用活性炭层析,采用以甲醇提取的浸膏上活性碳柱,以0.8%醋酸-10%甲醇-水洗脱,粗结晶溶于醋酸,加入氨水,低温下重结晶,1000kg卵巢中可获得10gTTX。 郭慧清等联合采用吸附树脂D+D101与弱酸性阳离子交换树脂D152提取河鲀毒素,改进了除蛋白质的方法。 中国海洋大学的崔建洲等利用D201大孔树脂层析、超滤、离子交换层析、分子筛层析、反相制备液相色谱等方法,从假睛东方鲀的肝脏中分离纯化得到TTX晶体,得率为81.1%。另外,中国国家海洋局第三研究所采用多重膜分离提取技术结合高效液相色谱法制备河鲀毒素纯品,纯度可达99.0%以上。
苦味酸盐法的氨解也可制备TTX纯品,其步骤如下:将粗品毒素(3.2g)和苦味酸(2.3g)溶于29 ml沸水之中,趁热过滤。冷却滤液,分离结晶沉淀,此沉淀在热水中重结晶3次,得黄色针状结晶的TTX苦味酸盐(4.8g)。此盐在200℃以上变黑,但不溶。元素分析样品需于80-100℃真空干燥20h。用4.7g苦味酸盐在热水中溶解,以氨水调节pH至9,冷却后,过滤出沉淀固体并加水洗涤。再溶于少量稀醋酸,加入氨水再沉淀,可得到纯TTX 2.6g。
根据河鲀毒素的微生物起源,分离出产河鲀毒素的微生物类群,通过微生物发酵来产生河鲀毒素。产TTX 的微生物类群有弧菌属(Vibrio)的溶藻弧菌(Vibrio alginolyticus)和鳗弧菌(Vibrio anguillarum),假单胞菌属(Pseudomonas),希瓦氏菌属的腐败希瓦菌(Shewanella putrefy aciens),交替单胞菌(Alteromonas),芽孢杆菌属(Bacillus),链霉菌属(Streptomyces),其中产毒力较高的主要是溶藻弧菌和河鲀毒素互生单胞菌(Alteromonas tetrodonis)。但微生物产河鲀毒素产量非常低,仅为ng级。其产生机制尚不清楚。

温馨提示:答案为网友推荐,仅供参考
相似回答