解:易知围成图形为x定义在[0,1]上的两条曲线分别为y=x^2及x=y^2,
旋转体的体积为x=y^2,
绕y轴旋转体的体积V1 减去 y=x^2绕y轴旋转体的体积V2。
V1=π∫ydy,V2=π∫y^4dy 积分区间为0到1,V1-V2=3π/10.
注:函数x=f(y)绕y轴旋转体的体积为V=π∫f(y)^2dy.
扩展资料:
传统定义
一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称x是自变量,y是x的函数。x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域 。
近代定义
设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数 和它对应,那么就称映射 为从集合A到集合B的一个函数,记作 或 。
其中x叫作自变量, 叫做x的函数,集合 叫做函数的定义域,与x对应的y叫做函数值,函数值的集合 叫做函数的值域, 叫做对应法则。其中,定义域、值域和对应法则被称为函数三要素
定义域,值域,对应法则称为函数的三要素。一般书写为 。若省略定义域,一般是指使函数有意义的集合 。
函数过程中的这些语句用于完成某些有意义的工作——通常是处理文本,控制输入或计算数值。通过在程序代码中引入函数名称和所需的参数,可在该程序中执行(或称调用)该函数。
类似过程,不过函数一般都有一个返回值。它们都可在自己结构里面调用自己,称为递归。
大多数编程语言构建函数的方法里都含有函数关键字(或称保留字)。
参考资料: