关于拉格朗日中值定理的疑问

函数为:f(x)=x^2*sin(1/x),x≠0;f(0)=0,则f(x)连续,可导
f'(x)=2xsin(1/x)-cos(1/x),x≠0;f'(0)=0为f'(x)的无穷间断点

由拉格朗日中值定理[f(x)-f(0)]/x=f'(ξ) ,(0<ξ<x)
两端取极限 lim [f(x)-f(0)]/x=lim f'(ξ),x—>0
又 f'(0)=lim [f(x)-f(0)]/x,x—>0
所以当x—>0时,limf'(x)=f'(0)
所以f'(x)在x=0处连续,与“f'(0)=0为f'(x)的无穷间断点”矛盾

确实想不明白,请指教!谢谢!

所以当x—>0时,limf'(x)=f'(0)
这一句有问题,因为只能说对满足
[f(x)-f(0)]/x=f'(ξ(x))
的那些ξ,
当ξ足够小时f'(ξ)足够接近f'(0)
但是要注意的是满足中值定理的ξ并没有占据x=0附近的所有点,要让x=0附近的任意一点x,满足x离0足够近时,f'(x)都能足够接近f'(0)才行,只有满足中值定理的那些ξ是不够的。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2010-11-26
首先,x=0处为振荡间断点。然后就是你在使用limf'(x)=f'(0)x趋于0时,已经默认导数连续了,用导数连续证明连续当然可以了。事实上limf(x)=f(a)x趋于a成立,只有x=a处连续才行!
相似回答