若级数∑an与∑bn都绝对收敛,证明下列级数也绝对收敛∑(an-bn)

如题所述

证明:
级数∑an与∑bn都绝对收敛,
即两个正项级数∑|an|与∑|bn|都收敛,
根据正项级数的性质,正项级数∑(|an|+|bn|)也收敛。
而|an-bn|<=|an|+|bn|, 根据正项级数的比较判别法,
正项级数∑|an-bn|也收敛,
所以级数∑(an-bn) 绝对收敛。
温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2017-05-17
1.快速判断法
若级数∑An绝对收敛
即级数∑│An│收敛,
设Sn= │A1│+│A2│+│A3│+...+│An│
即当n→+∞时,limSn存在

因为数列{Bn}有界
所以存在正数M,使│Bn│≤M
设Tn=│A1*B1│+│A2*B2│+│A3*B3│+...+│An*Bn│
则Tn≤[│A1│+│A2│+│A3│+...+│An│]*M = M*Sn
从而Tn递增有上界,
所以当n→+∞时,limTn存在
即级数∑(AnBn)绝对收敛.

cheng 09-03-08 1追问

证的是∑(an-bn)

本回答被网友采纳
相似回答