塑性材料和脆性材料的力学性能

从力学的角度描述两种材料的性能及破坏行式

1、材料的塑性和韧性的重要性并不亚于强度。塑性和韧性差的材料,工艺性能往往很差,难以满足各种加工及安装的要求,运行中还可能发生突然的脆性破坏。这种破坏往往无事故前兆,其危险性也就更大。屈服强度表示材料将发生破坏。脆性材料抵抗冲击载荷的能力更差。

2、材料在外力作用下(如拉伸、 冲击等)仅产生很小的变形即破坏断裂的性质。聚合物脆性与聚合物结构及使用条件(温度、外力作用速率等)有关,柔性链高分子聚合物脆性小,韧性好;刚性链高分子则相反。

扩展资料:

塑性材料和脆性材料的比较:

1、塑性材料一般为拉压等强度材料,且其抗拉强度通常比脆性材料的抗拉强度高,故塑性材料一般用来制成受拉杆件;脆性材料的抗压强度比抗拉强度高,故一般用来制成受压构件,而且成本较低。

2、塑性材料能产生较大的塑性变形,而脆性材料的变形较小。要使塑性材料破坏需消耗较大的能量,因此这种材料承受冲击的能力较好;因为材料抵抗冲击能力的大小决定于它能吸收多大的动能。

此外,在结构安装时,常常要校正构件的不正确尺寸,塑性材料可以产生较大的变形而不破坏;脆性材料则往往会由此引起断裂。

3、当构件中存在应力集中时,塑性材料对应力集中的敏感性较小。

参考资料来源:百度百科-塑性材料

参考资料来源:百度百科-脆性材料

温馨提示:答案为网友推荐,仅供参考
第1个回答  2019-04-18

塑性材料的力学性能主要用且切应力来描述,脆性材料主要用拉压应力来描述。脆性材料的破坏形式是拉应力超过极限值,它的判断准则主要是最大拉应力准则和最大拉应变准则。塑性材料的破坏形式是材料中的切应力操过了极限值,它的判断准则主要是最大切应力准则和畸变能密度准则。

脆性断口宏观特征—断口表面平齐,断口边缘没有剪切“唇口”。断口的颜色比较光亮,有时稍有灰暗,光亮的脆性断口的宏观...脆性断口微观特征—脆性断裂的微观判断是解理花样和沿晶断口形态;铸铁(牌号一般为以Q、HT等开头的材料),与非金属材料都是脆性材料。

材料在外力作用下(如拉伸、 冲击等)仅产生很小的变形即破坏断裂的性质。聚合物脆性与聚合物结构及使用条件(温度、外力作用速率等)有关,柔性链高分子聚合物脆性小,韧性好;刚性链高分子则相反。

扩展资料:

脆性断口宏观特征—断口表面平齐,断口边缘没有剪切“唇口”。断口的颜色比较光亮,有时稍有灰暗,光亮的脆性断口的宏观...脆性断口微观特征—脆性断裂的微观判断是解理花样和沿晶断口形态;铸铁(牌号一般为以Q、HT等开头的材料),与非金属材料都是脆性材料。

温度变化,应力情况,材料的疲劳极限,耐磨性,工作环境等等,结构主要还是从应力分布,大小,以及耐磨性等角度考虑。

材料的冲击吸收功能随温度的降低而降低,当试验温度低于TK时,冲击吸收功明显下降,材料由韧性状态变为脆性状态,这种现象称为低温脆性。

材料的塑性和韧性的重要性并不亚于强度。塑性和韧性差的材料,工艺性能往往很差,难以满足各种加工及安装的要求,运行中还可能发生突然的脆性破坏。这种破坏往往无事故前兆,其危险性也就更大。屈服强度表示材料将发生破坏。脆性材料抵抗冲击载荷的能力更差。

参考资料来源:百度百科——脆性材料

参考资料来源:百度百科——塑性材料

本回答被网友采纳
第2个回答  推荐于2017-11-24
塑性材料的力学性能主要用且切应力来描述,脆性材料主要用拉压应力来描述。脆性材料的破坏形式是拉应力超过极限值,它的判断准则主要是最大拉应力准则和最大拉应变准则。塑性材料的破坏形式是材料中的切应力操过了极限值,它的判断准则主要是最大切应力准则和畸变能密度准则。本回答被网友采纳
第3个回答  2011-12-03
塑性材料的力学性能主要用且切应力来描述,脆性材料主要用拉压应力来描述。脆性材料的破坏形式是拉应力超过极限值,它的判断准则主要是最大拉应力准则和最大拉应变准则。塑性材料的破坏形式是材料中的切应力操过了极限值,它的判断准则主要是最大切应力准则和畸变能密度准则。 脆性断口宏观特征—断口表面平齐,断口边缘没有剪切“唇口”。断口的颜色比较光亮,有时稍有灰暗,光亮的脆性断口的宏观...脆性断口微观特征—脆性断裂的微观判断是解理花样和沿晶断口形态;铸铁(牌号一般为以Q、HT等开头的材料),与非金属材料都是脆性材料。
温度变化,应力情况,材料的疲劳极限,耐磨性,工作环境等等,结构主要还是从应力分布,大小,以及耐磨性等角度考虑。
第4个回答  2011-12-11
金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。
相似回答