设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.

如题所述

证明:

∵ xn > 0

∴x(n+1)^2 = 6 + xn

∴x(n+1)^2 - 9 = xn - 3

∴x(n+1) - 3 = (xn - 3) / (x(n+1) + 3)

∵ x1 > 3, 由上式 xn > 3 对一切xn成立

∴x(n+1) - 3 = (xn - 3) / (x(n+1) + 3) < (xn - 3)/3

即 {xn-3 | n = 1, 2,...} 是正数递减序列, 所以极限存在。

得到其极限为0,所以原数列极限为3。

扩展资料

性质:

设一元实函数f(x)在点x0的某去心邻域内有定义。函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-)。

函数f(x)在点x0的左右极限中至少有一个不存在。函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点

如果每一un≥0(或un≤0),则称∑un为正(或负)项级数,正项级数与负项级数统称为同号级数。正项级数收敛的充要条件是其部分和序列Sm 有上界。

例如∑1/n!收敛,因为:Sm=1+1/2!+1/3!+···+1/m!<1+1+1/2+1/22+···+1/2^(m-1)<3(2^3表示2的3次方)。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2021-03-12

简单计算一下即可,答案如图所示

第2个回答  2017-03-09
极限为0.5*(1+根号5).证明:设f(x)=1+(Xn-1/(1+Xn-1)),对f(x)求导,得导数为正,f(x)单调递增,又f(x)=1+(Xn-1/(1+Xn-1))小于2,有上界.利用单调有界定理知其极限存在.对Xn=1+(Xn-1/(1+Xn-1))俩边取极限,设xn的极限为a(n趋向无穷大)可得a=1+a/(1+a) 解这个方程,结果取正就可以了.本回答被网友采纳
第3个回答  2016-10-15
Xn=1+(Xn-1/(1+Xn-1))>1,Xn=2-1/(1+Xn-1)<2,故Xn有界收敛。
设极限为C,则C=2-1/(1+C),C=(1±√5)/2,排除负数解,故极限为(1+√5)/2
相似回答