铁、铜、锌同位素测定

如题所述

铁、铜、锌同位素多接收器等离子体质谱法测定

自然界中Fe有4个稳定同位素,分别为54Fe、56Fe、57Fe和58Fe;Cu有2个稳定同位素,分别为63Cu和65Cu;Zn有5个稳定同位素,分别为64Zn、66Zn、67Zn、68Zn和70Zn。目前,国际上通用的Fe同位素标准物质为IRMM-014,Cu同位素标准物质为SRM976。目前还没有经过严格同位素组成定值的Zn同位素标准物质,不同实验室有自己的内部标准,使用最多的是“里昂标准”。“里昂标准”是一种JMC生产的Zn单元素标准溶液,批号为3-0749L。

多接收器等离子体质谱仪(MC-ICPMS)的诞生使得精确测试Fe、Cu、Zn同位素组成成为可能。MC-ICPMS的优势主要是离子化效率高以及测定精度高。

自20世纪90年代末期以来,Fe、Cu、Zn同位素研究受到了广泛的关注并且被快速地应用于宇宙化学、地球化学和生物作用过程领域,成为国际地球科学和生命科学领域一个新兴的研究方向。这些新的同位素体系为了解地球各圈层中的相互作用提供一种崭新的地球化学示踪手段。各国学者对不同的样品进行了Fe、Cu、Zn同位素分析,其中包括:地外物质、火成岩、沉积岩、各种矿物、海水、河水、地下水、生物体等。δ56Fe的变化范围为-2.96‰~0.44‰(Anbar,etal.,2007);δ65Cu的变化范围为-3.70‰~5.74‰(Anbar,etal.,2007);δ66Zn的变化范围为-2.65‰~3.68‰(Luck,etal.,2005;Wasson,etal.,1999)。

随着研究和应用工作的进一步深入,Fe、Cu、Zn同位素势必将成为地球科学和生命科学研究中的一种重要的地球化学手段。

方法提要

采用酸溶法将天然样品中的Fe、Cu、Zn提取出来,使用AGMP-1阴离子树脂对Fe、Cu和Zn进行分离和纯化,制成分别含Fe、Cu、Zn的溶液。使用MC-ICPMS进行Fe、Cu、Zn同位素组成的测定。

仪器和装置

多接收器电感耦合等离子体质谱仪(Nu Plasma、Nu PlasmaHR、Nu Plasma1700、Ne ptune、Iso Probe)。

自动进样器。

膜去溶装置。

超净化学实验室。

双瓶亚佛蒸馏器。

电子分析天平。

水纯化系统。

高精度移液器。

超声波洗涤器。

试剂与材料

超纯盐酸由优级纯盐酸经聚四氟乙烯双瓶亚沸蒸馏制得。用于铜同位素分析需亚沸蒸馏2次。

超纯硝酸由优级纯硝酸经聚四氟乙烯双瓶亚沸蒸馏制得。

超纯氢氟酸由优级纯氢氟酸经聚四氟乙烯双瓶亚沸蒸馏制得。

超纯水自来水经预纯化、初级纯化、高级纯化三级纯化系统(如Millipore、Elga等水纯化系统)获得,电阻率18.2MΩ·cm。

双氧水优级纯。

Fe、Cu、Zn单元素标准溶液光谱纯试剂配制盐酸或硝酸介质。

聚四氟乙烯器皿溶样杯、洗瓶、试剂瓶、广口瓶等。

IRMM-014铁同位素标准物质,SRM976铜同位素标准物质。

高纯度液氩。

AGMP-1阴离子树脂。

离子交换柱的制备采用聚乙烯材料交换柱(规格:6.8×43mm)。AGMP-1树脂首次用前先以水浸泡,弃去上浮颗粒,湿法装柱。先以0.5mol/LHNO3和H2O交替洗数次,再以7mol/LHCl+0.001%H2O2平衡。

器皿清洗实验用器皿需经严格的清洗才能满足超净化学实验要求,基本清洗步骤如下:①优级HNO3加热浸泡24h后,用超纯水清洗3遍;②超纯HNO3加热浸泡24h后,用超纯水清洗3遍;③超纯水加热浸泡24h后,再用超纯水清洗3遍。

分析步骤

(1)试样消解

a.硅酸盐试样的消解。根据试样中铁、铜、锌的含量,称取一定量的粉末试样,放入聚四氟乙烯溶样罐中,加入适量HNO3和HF,加热至120℃,恒温至试样完全消解;蒸干后再用HNO3蒸干数次,去除氟化物;再用HCl蒸干数次,转化为氯化物形态。

b.碳酸盐试样的消解。根据试样中铁铜锌的含量,称取一定量的粉末试样,放入聚四氟乙烯溶样罐中,加入适量2mol/LHCl,加热至120℃,恒温24h,取出上清液;残渣用HNO3-HF混合酸消解后蒸干,再用HNO3蒸干数次,去除氟化物;再用HCl蒸干数次,转化为氯化物形态后,与先前取出的上清液混合,蒸干。

c.硫化物试样的消解。根据试样中铁、铜、锌的含量,称取一定量的粉末试样,放入聚四氟乙烯溶样罐中,加入2mol/LHNO3,加热至120℃,恒温24h,取出上清液;将上清液蒸干后再用HCl蒸干数次,转化为氯化物形态后,与先前取出的上清液混合,蒸干。

d.磁铁矿、赤铁矿、自然铜等试样的消解。将称取的磁铁矿、赤铁矿、自然铜等单矿物试样放入聚四氟乙烯溶样罐中,加入6mol/LHCl,加热至120℃,恒温24h,将上清液取出、蒸干。

(2)化学分离

离子交换纯化。试液以0.5mL7mol/LHCl上柱后,用6mL7mol/LHCl+0.001%H2O2(加H2O2以抑制铁被还原),去除基体元素,再以相同试剂22mL淋洗接收Cu。以20mL2mol/LHCl接收Fe。最后以11mL0.5mol/LHNO3接收Zn(图87.32)。

图87.32 Cu、Fe、Zn淋洗曲线m(Cu)=2μg,m(Fe)=200μg,m(Zn)=20μg

该方法的优点是使用同一离子交换柱实现Cu、Fe、Zn的依次分离。在7mol/LHCl介质条件下,Cu和Co的洗脱曲线重迭(唐索寒等,2006),当试液中Co的含量较高时,会影响Cu同位素比值的准确测定(蔡俊军等,2006)。在6mol/LHCl介质条件下,可以进行Cu和Co的有效分离(唐索寒和朱祥坤,2006)。另外,如果只对试液进行Fe或Zn同位素分析,可适当改变HCl的酸度,减少试剂用量,降低本底。

(3)质谱测定

a.进样方式。纯化后的试液以0.2mol/LHCl或HNO3介质进样。试液通过蠕动泵进入雾化器,形成气溶胶经雾室进入炬管,这就是所谓的“湿等离子体”(wetplasma);或通过膜去溶装置,将溶剂加热挥发穿过半透膜被吹扫气带走,载气将溶质以干气溶胶形式送入炬管,这就是所谓的“干等离子体”(dryplasma)。

与湿等离子体相比,干等离子体技术可以降低挥发性组分产生的干扰信号或噪音,提高信号的灵敏度。对于NuPlasmaHR,在干等离子体工作条件下,Fe的进样浓度约为5×10-6,Cu、Zn的进样浓度约为2×10-7

为防止交叉污染,在试样-标样或不同试样测量之间需用与进样介质相同的酸对进样系统进行清洗,使待测元素的信号强度降低到可以忽略的程度后进行下个试样或标样的测定。为了提高清洗效果,可首先用较高酸度的酸(一般为2mol/L)清洗,然后用与进样介质相同酸度的酸清洗。

b.数据采集。同位素信号用法拉第杯接收。信号接收前需进行背景值测定,背景值的测定一般有3种模式:①峰位模式(onpeakmode):在不进样的情况下测定各个同位素峰位的背景值。②半峰位模式(half-peakmode):在不进样的情况下测定与待测同位素有半个原子质量数差的位置的噪声,以此作为峰位的背景值。③ESA偏转模式(ESA-offsetmode):在进样的情况下偏转EAS电压,阻止信号进入磁场和接收器,测定仪器噪声,以此作为峰位的背景值。

上述3种背景值测定方法各有利弊。峰位模式是最直接的测定方式,但由于在实际操作过程中难以做到试样测试之间对进样系统的彻底清洗,这种方法得到的背景值实际上含有一定程度的试样信号。ESA偏转模式测得的是仪器的电子噪声,是严格意义上的背景值;在试样测试过程中,实际背景值不仅包括电子噪声,还包括各种离子的散射对待测信号的影响。利用半峰模式进行背景值测定的原理是假定在远离待测同位素峰半个质量数的位置没有实际试样的信号,并且背景值的分布是均一的;实际上散射离子的分布并不一定均一,由于一些双电荷离子的存在可能在某些半个质量数位置存在一定的信号峰。

完成背景值测定之后即进行试样测定,试样的实际信号等于测量信号减去背景值。这一过程可以由计算机在线直接完成,也可以根据需要离线操作。

信号采集在计算机的控制下自动进行。在进行Fe、Cu、Zn同位素测量时,如果每个数据点的积分时间为10s,每组(block)数据采集10~20个数据点即可。

(4)仪器质量分馏校正与数据表达

a.仪器质量分馏校正。与TIMS相比,MC-ICPMS同位素分析可以产生较大的仪器质量歧视(instrumental mass discrimination)。在正常仪器工作条件下,Fe、Cu、Zn同位素质量范围的仪器质量歧视为3%u-1。原则上,用MC-ICPMS进行同位素比值测定时仪器的质量歧视可以通过元素外标法(element doping method)、标样-试样交叉法(standard-sample-bracketing method)或双稀释剂法进行校正。

标样-试样交叉法。在仪器调试稳定后,进行标样-试样的交叉测定。以试样前后两次标样结果的平均值为标准,计算试样的同位素组成相对与标样的偏差。该方法的最大优点是操作简便,但要求化学纯化过程的回收率达到99%以上,以避免纯化过程中可能造成的同位素分馏。运用标样-试样交叉法进行仪器质量歧视校正的前提,是仪器对于标样和试样的质量歧视在测试误差范围内相同。在实际操作过程中,标样的同位素比值是通过试样测定前后两次标样测定值的内差获得,因此该方法允许测试过程中存在相对均匀的质量分馏飘移。

元素外标法。在试样和标样溶液中加入与待测的元素的质量数相近的至少具有两个同位素的元素(进行Cu同位素测定时一般以Zn为外标元素,进行Zn同位素测定时一般以Cu为外标元素,进行Fe同位素测定时可以Ni为外标元素),对这两个元素的同位素进行同时测定,选择符合所用仪器的质量分馏规律,以外标元素为标准计算质量分馏因子,假定待测元素的同位素的质量分馏因子与外标元素的相同,计算试样和标样的待测元素的同位素“真值”,再根据此“真值”计算试样的同位素组成与标样的偏差。应当指出,运用元素外标法进行同位素测定时,仍需按标样-试样交叉法的程序进行。与单纯的标样-样品交叉法相比,该方法有可能在一定程度上提高试样的测试精度。

双稀释剂法。除了上述两种方法外,进行Fe同位素测定时还可用双稀释剂法。该方法在样品处理前定量加入已知同位素比值的两种Fe同位素(一般为57Fe和58Fe),选择适合所用仪器的质量分馏规律,对试样和标样测试过程中的质量分馏进行校正,获得试样和标样同位素组成的“真值”。该方法的优点是对试样化学处理的要求相对较低,并且可以避免测试可能存在的基质效应。该方法操作繁琐,并且不能对试样所有Fe同位素进行测定。

b.标准物质与数据表达。样品的Fe、Cu、Zn同位素组成以相对于标准物质的千分偏差或万分偏差表示:

岩石矿物分析第四分册资源与环境调查分析技术

岩石矿物分析第四分册资源与环境调查分析技术

当前,国际上通用的铁同位素标准物质为IRMM-014,铜同位素标准物质为SRM976。对于锌同位素,由于目前还没有经过严格同位素组成定值的标准物质,不同实验室有自己的内部标准,使用最多的是“里昂标准”。里昂标准是一种JMC生产的Zn单元素标准溶液,批号为3-0749L。

(5)同质异位素干扰运用MC-ICPMS进行Fe、Cu、Zn同位素测定时可能存在一系列的同质异位素干扰(表87.29)。概略地讲,这些同质异位素干扰可以分为两类:一类与试样的成分有关,如54Cr+54Fe+64Ni+64Zn+的干扰;另一类与测试方法有关,如[14N40Ar]+54Fe+、[16O40Ar]+56Fe+的干扰。与试样有关的干扰可以通过化学纯化解决(唐索寒等,2006;唐索寒和朱祥坤,2006),而与测试方法本身有关的干扰则需要通过改变工作条件、干扰信号扣除等方法克服。

表87.29 Fe、Cu、Zn同位素测定过程中潜在的干扰信号

a.低分辨率模式下同质异位素干扰的评估。对于绝大多数试样而言,经过化学纯化后可以有效地去除可能的干扰元素,满足MC-ICPMS进行Fe、Cu、Zn同位素测定的要求(唐索寒等,2006;唐索寒和朱祥坤,2006)。

对于Cu、Zn同位素测定,化学纯化后的试样产生的同质异位素干扰信号非常低,加之运用标样-试样交叉法进行仪器质量分馏校正可以抵消部分干扰信号,干扰信号一般可忽略不计。应当注意的是,由于Na无处不在,进行Cu同位素测定时应特别注意可能的Na污染问题,经常性地对试剂中的Na含量进行检测。正常工作条件下,一般应保持试液中的23Na/63Cu<0.01。进行Zn同位素测定时,化学纯化后的试液几乎没有对64Zn+66Zn+的干扰信号,但有可能存在一定程度的对67Zn+68Zn+的干扰(表87.29)。对该问题的一种有效的评估方式是,以一定浓度的Zn溶液为标样,对含不同浓度的Zn的溶液进行测定,检测Zn同位素组成的测定值随浓度的变化情况(李世珍等,2008),并由此得出试液的Zn浓度相对与标样的允许变化范围。如果质量数为67和68的干扰信号难以控制到忽略不计的程度,可只报道66Zn/64Zn比值。

与Cu、Zn同位素不同,在低分辨模式下进行Fe同位素测定时存在较强的同质异位素干扰(表87.29),必须对干扰信号的强度进行详细评估,并通过一系列操作,抑制干扰信号强度,提高信号-干扰比。具体地讲,这些操作过程包括以下几个方面:①通过膜去溶装置进样,去掉溶液中的挥发性组分,降低干扰信号强度。②改变RF输出功率。干扰信号的强度可随RF功率的改变而改变,为了最大限度地降低干扰信号的强度,在低分辨率模式下运行时,需要在1100~1600W寻找RF的最佳输出功率。③降低仪器灵敏度。离子信号通过特制的低灵敏度进样锥进入质谱仪,在降低信号强度的同时,该进样锥可有效地抑制[40Ar14N]+、[40Ar16O]+和[40Ar17O]+等干扰信号的产生。④增加试液浓度。在降低仪器灵敏度的同时,增大试液浓度,提升信噪比,从而降低干扰信号的影响。⑤扣除干扰信号。经过上述操作后对仍存在的干扰信号的大小进行评估,在测得的离子信号中扣除相应的干扰信号。⑥试液与标样的浓度匹配。如上所述,仪器的质量歧视校正通过试液-标样交叉法进行,Fe同位素比值的测定结果以试液相对于标样的千分偏差表示,见公式(87.35)、公式(87.36)。因此,在理想状态下(即干扰信号的波动可以忽略不计),如果标样与试液的浓度完全相同,通过与标样的归一化,干扰信号的影响将被抵消。

b.高分辨率模式下同质异位素干扰的分离。进行Fe同位素测定的主要干扰信号是ArN+、ArO+离子(表87.29)。严格地讲,这些离子和与之相对应的Fe同位素间存在微小的质量差异,利用这一差异,可以在高分辨下实现Fe同位素和对应的ArN+、ArO+离子的有效分离。图87.33为NuPlasmaHR型质谱仪在高分辨模式下将多原子干扰信号与待测信号分开的图解,其中左边标有54、56、57的为真正试液的Fe信号,而中间3线重叠处为干扰信号与试液信号的叠加,右边为干扰信号。取无干扰处的Fe信号就可得到试液真正的Fe信号,从而有效地将干扰去除。

图87.33 高分辨下Fe同位素与干扰峰的分离54Fe+56Fe+57Fe+谱图的叠加

与低分辨相比,仪器在高分辨模式下运行时,信号损失约为90%。在高分辨模式下,采用正常的进样锥,所需试液浓度与低分辨模式下相近。

(6)基质效应与浓度匹配

运用标样-试液交叉法进行仪器质量分馏校正的前提是,在误差范围内,测试过程中仪器的质量分馏对于试样和标样是相同的。如果在测试过程中因试样与标样化学成分的不同而导致仪器质量分馏的变化,将会使运用标样-试样交叉法进行仪器质量校正后的数据偏离真值,这就是所谓的基质效应(matrixeffects)。在运用MC-ICPMS进行同位素测定时,基质效应是个值得重视的问题。例如,在进行Fe同位素测定时,当纯化后的试样中Al的含量大于Fe含量的2%时,Fe同位素的测量值就有可能偏离真值(朱祥坤等,2008)。

基质效应的另一种表现形式是酸度对仪器质量分馏的影响。李津等(2008)发现在HNO3介质条件下进行Cu、Zn同位素测定时,仪器的质量分馏对酸度非常敏感,而在HCl介质中,酸度的影响则小得多。

基质效应的一种特殊表现形式是浓度效应,也就是说,仪器的质量分馏受溶液中待测元素的浓度影响。Zhuetal.(2002)在研究Ti同位素测定方法时首先发现了这一现象,进一步的研究表明,在进行Fe同位素测定时需将样品相对于标样的Fe的浓度偏差保持在15%以内(朱祥坤等,2008)。

综上所述,基于基质效应和测试过程中一定程度的干扰信号的影响,在运用MC-ICPMS进行Fe、Cu、Zn等同位素测定时,必须保持试样和标样中待测元素的浓度以及介质的酸度相匹配。二者间允许的偏差可能与具体仪器和工作条件有关。因此,在Fe、Cu、Zn进行方法移植时,需对相关问题进行细致的调查,进而确定出针对所用仪器的酸度和试样浓度的允许变化范围。

方法的重复性

运用标样-样品交叉法进行仪器质量分馏校正时,Fe、Cu、Zn同位素的测试结果的长期重现性(即外部精度,2SD)一般好于0.05‰每原子质量数。

参考文献和参考资料

蔡俊军,朱祥坤,唐索寒,等.2006.多接收电感耦合等离子体质谱Cu同位素测定中的干扰评估[J].高校地质学报,12:392-397

李津,朱祥坤,唐索寒.2008.酸度对多接收器等离子体质谱法Cu、Zn同位素测定的影响[J].分析化学,36(9):1196-1200

李世珍,朱祥坤,唐索寒,2008.多接收器等离子体质谱法Zn同位素比值的高精度测定[J].岩石矿物学杂志,27(4):273-278

唐索寒,朱祥坤,蔡俊军,等.2006.用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法[J].岩矿测试,25:5-8

唐索寒,朱祥坤.2006.AGMP-1阴离子树脂元素分离方法研究[J].高校地质学报,12:398-403

朱祥坤,李志红,赵新苗,等.2008.铁同位素的MC-ICPMS测定方法与地质标准物质的铁同位素组成[J].岩石矿物学杂志,27 (4) : 263-272

Anbar A D,Rouxel O.2007.Metal stable isotopes in paleoceanography [J].Annu.Rev.Earth Planet Sci.,35:717-746

Luck J M,Ben Othman D,Albaréde F.2005.Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes [J].Geochimica Cosmochimica Acta, 69(22) : 5351-5363

Wasson J T, Lange D E, Francis C A, et al.1999.Massive chromite in the Brenham pallasite and the ractionation of Cr during the crystallization of asteroidal cores [J ].Geochim Cosmochim Acta,63: 1219-1232

Zhu X K,Makishima A,Guo Y,et al.2002.High precision measurement of titanium isotope ratios by plasma source mass spectrometry [J].Intenational Journal of Mass Spectrometry,220: 321-329

温馨提示:答案为网友推荐,仅供参考
相似回答