城市地质三维建模的数据需求与数据组织

如题所述

城市地下地质空间勘探研究不仅包括浅部的工程建设层,还应包括中部、深部地层。相对于其他地质勘察项目而言,城市地质勘察尤其是中心城区的地质勘察程度较高、资料较丰富,既有大量可精确描述地层的钻孔数据,又有大量根据钻孔和物探数据解释得到的剖面图、地层平面分布图、地质构造图等人工解释数据,这些数据表达地质空间信息各有特点,又都不同程度地存在表达三维信息的局限性和不完整性,如何充分利用各种数据的特点,通过数据耦合的方式建立城市地下地质空间三维地质模型是建设城市地下地质空间信息系统建设的关键。

(一)基础地理空间数据

这类数据主要包括地理底图(地形图)和遥感影像,地理底图主要用于钻孔点位、三维模型和基础地理空间信息的叠加定位,遥感影像则作为地表纹理数据叠加在地形模型上。地理底图类数据要求为GIS矢量数据格式(如MAPGIS *.wt,*.wl,*.wp文件),这类数据一般按照水平分幅、垂向分图层的方式进行组织,如图3—1所示。遥感影像数据一般为JPG、TIFF格式,需要包含用于校正的控制点信息。

图3—1 海量底图逻辑结构图

(二)钻孔类数据

城市三维地质建模中最常见的一类建模数据就是钻孔数据。工程钻探法是获取地下三维空间信息的重要方法,通过钻孔可以直接获取详细的岩土层分布状况,取得的岩芯(土样)还可以进行相应的室内试验获得其物理力学指标。钻孔资料因其直观、准确、详细的特性在三维地层模拟中具有至关重要的意义,根据钻孔数据构建三维地层实体模型一直是国内外三维地质建模领域研究的热点,并取得了一定的研究成果。

钻孔基本资料表,钻孔土层描述表,整体(标准)地层描述表是基于钻孔进行三维地质建模所必需的几个核心表,三个表所含有的建模必要字段、名称可以不与下述表的字段名称相同,但所代表的意义一定要相同。

1.钻孔的基本资料表(表3—6)

表3—6 钻孔基本资料表

说明:①日期型数据要统一格式;②孔口标高X,Y最好为国家坐标系;③其中1,6,9,10,11 项为三维建模必需项。

2.钻孔的土层描述表(表3—7)

表3—7 钻孔土层描述表

说明:①分层序号为同一钻孔内不同土层的顺序号;②其中1,2,3,4,7项为三维建模必需项。

3.全局地层描述表(表3—8)

表3—8 全局地层描述表

说明:①1,2,11字段为三维建模必需项;②说明字段“地层名称”和其他表中的字段“土质类型”是一致的。

全局地层描述表实际上就是一个“基本地层层序表”,其形成规则是:按照地层沉积顺序和形成年代,结合岩土体物理力学指标数据,自上而下按照由新至老的顺序进行排列。在形成此基本层序表的过程中,可能会出现地层顺序无法排列的情况,这需要结合工程勘察人员的经验,按照地层叠覆律进行确定。简单地说,地层层序要求建模区域内所有的地层都被自上而下的排序,并且在各个钻孔中的顺序都不变。

事实上,地层层序并不见得对所有的钻孔都合适。由于地层尖灭,透镜体等存在于局部区域,特定的地层可能只在一部分区域连续,而在其他地方被另外的地层切割。采用“全局地层层序”的概念能够容易的表达这些复杂的地质现象。

下面是关于“全局地层层序”必须满足的一些基本规则:

(1)如果在一个钻孔中,地层A在地层B的上面,则在“全局地层层序”中,A在B的上面。

(2)如果在钻孔1中地层A在地层B的上面,而在钻孔2中地层B又在地层A的上面,则:

①在地层层序中至少有3个地层;

②必须使用其他的钻孔来确定地层层序。

(3)“全局地层层序”中地层的数目不少于:

各个钻孔的地层数目的最大值+在该钻孔(即具有最大钻孔数目的钻孔)中不存在的所有地层的数目。

4.其他数据表

包括土试数据表等不是三维地质(结构)建模所必须,在此省略。

(三)平面地质图类数据

1.一般格式

要充分利用平面地质图所蕴涵的地质构造信息来建立三维地质结构模型,需要首先将现有的纸质图件数字化为电子图件或者将原有的电子图件转化为建模系统能够识别的电子图件格式,如下:

(1)平面地质图采用GIS图形数据格式(如MAPGIS *.wt,*.wl,*.wp文件)进行存储,可利用GIS图形编辑模块进行查看、编辑、修改等操作。

(2)一个地质平面图可用一个工程文件(如MAPGIS *.mpj)来存储。这个工程文件须记录完整的平面图信息,如坐标系类型、投影参数、比例尺等。

(3)每一个工程文件(如MAPGIS*.mpj)由以下文件组成(其中第一个是必须有的):

①区文件记录原地质平面图中的地质单元分区信息。主要属性字段有:ID,面积,周长,区域类型,地层编号,备注。

②弧段属性结构,记录地质单元分区中的线属性。主要属性字段有:ID,长度,弧段类型,断层编号,盘类型等。

③*.wt:图上必要的标注信息。

④另外,如果有其他内容需要记录下来,可另在工程文件中附加其他点、线、面文件。

2.等值线格式

有些平面地质图含有等高线信息(如地层埋深等值线),这些等值线对建模有同样的重要意义,需要将等值线信息进行标准化,记录下等高线类型、数值等信息。

等值线数据可采用GIS工程文件格式(如MAPGIS *.Mpj)组织,也可以采用单独的点、线文件格式(如MAPGIS *.wt、*.wl)组织。但无论采用何种组织方式其包含的三维地质建模基本信息如下表所示:

(1)顶、底板埋深等值线文件(结构建模)格式。地层顶、底板埋深等值线文件属性结构如表3—9所示。

表3—9 地层顶、底板埋深等值线文件属性结构

(2)等厚度线文件(结构建模)。地层等厚度线文件属性结构如表3—10所示。

表3—10 地层等厚度线文件属性结构

(3)高程点文件(结构建模)。高程点文件属性结构如表3—11所示。

表3—11 高程点文件属性结构

(四)地质剖面类数据

每个地质剖面采用一个GIS工程文件(如MAPGIS *.mpj)来存储,地质剖面数据采用GIS图形数据格式(如MAPGIS*.wt,*.wl,*.wp)分图层进行存储,可利用基于GIS图形编辑功能开发的“地质剖面编辑器”查看、编辑、修改剖面图。

在地质剖面输入与标准化处理时,采用以剖面起始点、终止点、拐点为地质剖面空间形态表示核心数据,轮廓区域作为三维地质结构建模核心数据。对于每个剖面工程文件,主要记录以下图形和属性信息:

1.定位点文件(必备)

剖面定位点文件要在剖面上标识出剖面起点(X0,Y0)、终点(Xn-1,Yn-1)剖面所经过的中间点(Xi,Yi)。由于剖面图在垂直方向上没有转折,另外用户还要输入两个以上高程控制点Hj和Hj+1,这样系统就可以自动计算剖面的水平、垂直比例尺及剖面实际空间位置,如图3—2所示。

图3—2 剖面定位点标识示意图

定位点属性结构如表3—12所示。

表3—12 定位点属性结构

2.地层区文件(结构建模)

地层区文件中既要定义每个区的属性结构还要定义构成区的弧段的属性结构(表3—13,表3—14)。

表3—13 地层区文件区属性结构

表3—14 地层区文件弧段属性结构

3.地层线文件(结构建模)

地层线文件属性结构同地层区弧段属性结构。

4.钻孔线文件(钻孔建模必备)

钻孔线文件属性结构如表3—15所示。

表3—15 钻孔线文件属性结构

5.断层线文件(断层建模必备)

断层线文件是进行基于剖面的断层建模所必需的数据,其属性结构如表3—16所示。

表3—16 钻孔线文件属性结构

(五)地质空间数据的规范化和归一化

城市地质空间基础数据,数据层面多,来源不同,采集于不同时期,数据类型亦不同(地理底图、遥感影像、地质图、钻孔等),即是都是地图数据,其投影方式、坐标体系、地图单位等参数也不一定完全一致,进行三维地质建模前除按照上述数据需求准备数据外,按照一定的标准对系统数据进行规范化处理是非常有必要的。所谓数据的规范化处理是指按照国家标准、行业标准、地方标准或系统建设标准对数字化后的地质资料分类进行数据的预处理、概括处理等。

1.数据预处理

坐标配准:将各层次数据的空间坐标体系都转换成统一的坐标系(如城市坐标),地图单位也要统一(如以米为单位);投影规一化:用GIS的投影转换功能把各数据层转换成统一的投影方式;遥感影像矢量化:遥感数据必须经过矢量处理、加注属性、建立空间拓扑关系后使用;确定统一边界:对研究区域确定统一的标准边界,用叠加和切边操作使各数据层的边界完全一致。

2.三维建模数据的概化处理

在所有的数据规范化处理工作中最关键的也是最具挑战性的工作是地层、钻孔、剖面、构造地质图等三维地质资料的概化解释工作。也就是要建立三维地质模型,再通过必要的渲染和可视化表达分析手段模拟城市地下地质空间的状况。城市三维地质建模主要使用两类数据:一类是反映地表变化情况的基础地理数据,如地理底图、DEM数据、遥感影像数据,这类数据对三维地质模型只起空间定位、地形约束、修饰作用;另一类是映地下地质结构变化情况的地质勘探解释数据,如钻孔、剖面、地质图等,进行三维地质建模时需要使用这类数据精确确定地层、断层等点状、线状、面状及体状的地质构造信息,这类数据是进行三维地质建模的关键数据。由于三维地质模型的确定性和拓扑严格性,相应地也要求这类数据必须具有严格的、确定的几何和拓扑一致性。

考虑到项目搜集到的钻孔数据多来自于不同时期、不同项目的成果,由于当时勘探目标、所依赖的标准不同,甚至因不同人的认识不一样,导致对同一区域或相近区域地质现象解释的详细程度和划分结果不一样,甚至差别非常大或是自相矛盾,这对于强调全市范围内应用的城市地质调查成果表达和三维地质建模来说是无法接受的。基于不同勘探资料解释得到的剖面图、地质图也存在同样的问题,且由于编制这些图的原始目的主要是进行成果的表现,制图人员多是从制图的角度考虑如何修饰、如何好看,并没有过多考虑图面上地质元素的拓扑、几何的严格和一致性,而这些都是进行三维地质建模所必需的。

鉴于上述原因,系统建设过程中需要结合三维地质建模对数据精度和一致性的要求,按一定的规则对原始钻孔、剖面、地质图进行概化处理,使得这些反映垂向地质结构的数据逐步变得有序化,为进一步自动或半自动生成三维地质模型奠定基础。

上述工作主要借助现成的GIS工具(如MAPGIS等)软件或其他工具软件完成结合专业人员知识经验完成。

温馨提示:答案为网友推荐,仅供参考
相似回答