谁知道美国和伊拉克战争中,美国用的坦克,装甲车和战斗车所用钢的化学成分及配比啊!

美国和伊拉克战争

成分:碳0.37~0.45%,硅0.17~0.37%,锰0.5~0.8,铬0.8~1.1%
退火硬度:小于207HBS
正火硬度:小于250HBS
调质处理:试样直径:25mm,850度淬火加热油淬,520度回火后:抗拉1000兆帕,屈服800兆帕,延伸9%,断面收缩45%,冲击韧性588.3千焦/平方米

综合评述了近年来高性能难熔材料的研究进展,着重介绍了难熔金属、合金及其化合物、复合材料在军事、核工业、空间、医学、电力和电子技术等尖端领域的具体应用情况,讨论了未来高性能难熔材料可能的发展趋势,分析了难熔材料扬长抑短实现高性能的可能途径、方法及工艺装备。最后探讨了我国在此领域的机遇、挑战与对策。
关键词:难熔材料,应用,发展
分类号:TF125.2+42 TF125.2+43

APPLICATIONS AND DEVELOPING TENDENCY OF ADVANCED REFRACTORY MATERIALS IN HIGH-TECH FIELDS

Ge Qi-Lu Xiao Zhen-Sheng Han Huan-Qing
(Central Iron & Steel Research Institute,Beijing,100081,China)

Abstract:The research progress of advanced refractory metals,their alloys,compounds and composites was reviewed in this paper.Their concrete applications in some high technological fields such as military use,nuclear industry,space science,medical science,electronic power and electron technologies were emphatically introduced.The reasonable developing tendency in the future was discussed.The probable route,process and equipment as well as the opportunity,challenge and countermeasure were analyzed and probed.
Key words:refractory material,application,development▲

难熔金属、合金及其化合物和复合材料等难熔材料,由于它们独特的高熔点以及其他一些特有的性能,历来被作为高新材料加以发展,在国民经济中占有重要地位。例如,以WC为硬质相的硬质合金已成为现代工业的“牙齿”,钛已成为继铁、铝之后的第三金属。随着科学技术的发展,对材料也提出了日益苛刻的要求,在传统材料已越来越不能满足这些新需求的今天,难熔材料却越来越显示出它独特的优越性,尤其是在国防军工、航空航天、电子信息、能源、防化、冶金和核工业等领域有着不可替代的作用,受到世界各国的高度重视,已成为材料科学界最为活跃的研究领域之一。

1 高性能难熔材料在尖端领域的应用
高性能难熔材料是尖端领域发展的产物,反之,难熔材料高性能的实现又为尖端领域的发展提供了材料基础。
1.1 军事应用
难熔材料一开始就与军事应用结下了不解之缘,许多研究都与军事目的有关。冷战时期,美国和前苏联竟相发展的各种先进武器,难熔材料的应用占有十分重要的地位。
1.1.1 侵彻弹
侵彻弹是破坏敌人飞机跑道和坚固掩体的有效武器。其弹芯的主要组成是以钨为基的高密度合金和硬质合金。美国在海湾战争中就使用了大量的侵彻弹来破坏伊方的军用机场跑道,有效地遏止了伊方飞机的起降,大大削弱了伊的空中防卫力量。美国还针对伊方坚固的钢筋混凝土掩体采用三级侵彻弹,极大地降低了伊方地面部队及人员的防卫和生存能力。据报道,侵彻弹可在坚固的飞机跑道上炸出一个直径200m的大坑,能穿透65mm的装甲钢板。
1.1.2 集束炸弹
据报道,在北约对南斯拉夫的空袭中使用了集束炸弹,集束炸弹的主要成分是难熔金属,它的有效杀伤范围可达1km。携带巨大动能的碎片还可穿透坦克、装甲运兵车,尤其是顶盖和尾翼等薄弱部位。因此是对付大部队集结和坦克、装甲车群的最好武器。
1.1.3 导 弹
美国在海湾战争中使用了大量的高技术先进武器,其中使用最多的是包括巡航导弹、爱国者导弹在内的各种导弹。美国将导弹列入了“星球大战”计划,我国也在“两弹一星”中重点发展导弹技术。导弹的威慑作用不仅在于它本身,而且在于它的运载能力。
固体燃料的火箭导弹是应用难熔材料最多的武器之一,主要用于弹头罩、舵板、喷口、护板、紧固件、导航仪和动平衡装置,导弹发射管中还用到锆的吸氢储氢材料等。导弹在点火后2~3s内,温度就从室温升高到4 000K左右,并伴有强烈的粒子冲刷和烧蚀,因此对材料的要求十分苛刻。W-Cu材料能适应如此苛刻的工作环境。
英国与阿根廷马岛战争之后,因阿方用一枚价值100万美元的导弹击沉了英方一艘价值10亿美元的巡洋舰,使各国进一步认识到导弹的战略作用,竟相发展导弹技术。美国新的“战区导弹防御计划”就是以导弹为基础的。各国还发展了导弹的其他一些应用,如短时通讯导弹,导弹鱼雷等。前苏联在此领域有着不可低估的力量。毫无疑问,导弹已成为现代和未来高技术战争的主角,尤其对发展中国家至关重要。
1.1.4 穿甲弹
作为动能穿甲来说,钨或以钨为基的高密度合金和硬质合金是最经济和最有效的。
1.1.5 易碎弹
易碎弹是为对付来犯飞机特别是超音速飞机而新发展的一种防空武器,其特点是在接近高速飞行目标时,能借助于飞行物的超声波将其粉碎成弹幕,从而提高命中率。因而要求弹体具有高的压拉强度比和携带巨大的动能。最新研究表明,钨合金可担当此任。
1.1.6 电磁炮
电磁炮被认为是拦截导弹的最具效力的武器之一。电磁炮的原理是以电流与磁场的相互作用而产生的强大推力(洛仑兹力)来发射炮弹。众所周知,利用火药发射炮弹最大速度不过2km/s,而电磁炮的发射速度可大大超过使用火药,按其理论可达到光速(即每秒30万km)。
美国之所以将电磁炮列入“战略防御计划”是因为电磁炮具有许多优点,尤其是利用电磁炮拦截来袭导弹更是妙不可言,它可以准确地拦击不同方向的目标。此外,利用电磁炮可在极短的时间内散布成弹幕,从而可从容地对付高速来犯之物,并做到万无一失。与激光武器相比,电磁炮打击敌方卫星更胜数筹:全天候、机动准确。其他发达国家也在研究把电磁炮用于反坦克炮或反飞机中。因为现有坦克、武装直升飞机或装甲车的外壳已用陶瓷复合装甲,只有用电磁炮才能穿透它。
美国比其他国家领先一步研究电磁炮,现不仅已经实现了以10~20km/s左右的速度发射小弹丸,而且还可以以5~10km/s的速度发射重1kg左右的试验炮弹。电磁炮的关键就是电磁轨道材料,它必须具有优良的导电导热及耐高温等综合性能,非难熔材料莫属。目前,世界各国尤其是日本正在加紧追赶美国,积极组织和大力开发电磁炮,使其尽早应用于军事及其他领域。
1.1.7 磁爆弹
磁爆弹的设计思想是基于“炸药发电”,所谓“炸药发电”是利用炸药爆炸的巨大能量瞬间产生极强的电流,使电流通过一导轨,立即在导轨周围产生一极强的磁场并放射出去,从而实现磁爆炸,使敌方电子通讯设备瞬间毁坏或从此不能正常工作。据计算产生强大磁爆的瞬间,其功率可达10亿kW。据称,俄罗斯制造了一种小型磁爆弹——电子炸弹,可放在公文包内,其有效范围为100m。同样,其导轨材料是关键,也非难熔材料莫属。
1.1.8 核潜艇和核动力航空母舰
由于要求最有效地利用空间,军用核动力舰船的安全和核防护就显得更为重要。因此需要性能更好的锆、钼、钨材料。铌合金具有良好的抗海水腐蚀的能力,经3年试用的铌合金件取出时仍光亮如新,可制作水下装置(如潜艇测深用压力传感器、声纳探测器等)。
1.1.9 射线武器屏蔽
原子弹、氢弹和中子弹等核武器另一重要的杀伤力就是高能射线。而高密度物质具有良好的射线屏蔽作用,与中子吸收物质配合使用可收到良好的作用。
1.1.10 装甲材料
难熔金属的许多化合物具有十分优良的综合性能,如高硬度、耐高温、耐磨和自增强等,是十分优良的装甲材料,并已在坦克、武装直升机、运兵车和防弹衣中得到应用。
其他方面的应用还有许多,如飞机引气控制阀用铌合金、挠性加速度表元件、动平衡等的配重,卫星的导航装置、储能装置和精密仪器仪表等。
1.2 民 用
和平时期利用尖端军事领域的成果将产生巨大的社会经济效益,如用电磁炮技术合成新材料就是一个较有希望的发展方向。用电磁炮发射的炮弹撞击壁障后,立刻产生超高压。例如,速度为3~5km/s的炮弹可产生50~150万个大气压力。据计算,速度若达到10km/s,则会产生1 000万个大气压的压力。目前研究结果表明,利用这种高压可合成多种新材料。例如正在研究以1 000万个大气压力制造固体氢块,即所谓的金属氢。
1.2.1 核工业
核工业中难熔金属的应用以锆为最多,主要是锆管,钨、钼次之。锆具有良好的抗辐照及抗水侧腐蚀能力,因此特别适合用于“清水”及“杜坎”反应堆中的各种管道。
对于新一代核反应堆,为加强核安全,防止核泄漏的发生,采用钨基高密度合金的惯性储能装置能在事故发生后没有任何动力的情况下维持3~5min的冷却循环,从而为事故的处理赢得宝贵的应急时间,防止核反应堆烧穿发生核泄漏。并且,由于新的设计关键部位采用了难熔材料使得总体结构更为紧凑,从而能够将整个核反应堆封闭起来,进一步防止了核泄漏的发生。万一发生核泄漏,核反应堆的另一道屏障是钼合金的核燃料收集器。核燃料泄漏后有大量的熔融的钠伴随流出,熔融钠具有极强的腐蚀作用,泄漏后的温度最高可达1 200℃左右,而钼合金具有很好的耐熔融钠腐蚀的能力。此外,难熔金属及合金还常被用作核废料的储罐。
钨合金还作为冷核试验的模拟材料,用于核弹及核反应堆设计参数的确定。
1.2.2 电力、电子信息技术
钨在民用上传统的应用是电光源,自爱迪生发明灯泡以来尚未有多大的变化,但在向大功率方向发展,如钨阴极和阳极大功率氙灯、铌合金管高压钠灯。
新一代集成电路中,由于布线越来越细(目前已达0.2μm),散热和耐温的需要都将扩大对钨、钼基板的需求,此外金属化、封装也将向难熔材料发展。高CV值的钽、铌电容器将进一步扩大应用并向小型化发展。电子工业中大量采用的支撑件、保持环和底托等也多采用难熔材料。在通讯设备中,钨等难熔金属也发挥着重要作用,小到寻呼机里的震子,大到发射设施。
因钨具有良好电子发射功能,因此钨合金及W-Cu等一类复合材料是良好的电极材料,已在电火花加工、电力机车导块、电力工业的超高压开关、焊接中大量应用。W-Re合金已在许多场合取代铂作为测温热电偶,高性能钨铼丝还作为显像管发射电子用材进入到千家万户。铬、钒等作为靶材在电子显微、镀膜玻璃中业已大量应用。
1.2.3 空间、海洋及医学
21世纪是探索宇宙和开发海洋的世纪,因此许多国家都在积极准备建立空间站和海底世界,以期望和平利用外层空间和大海宝库。外层空间存在许多尘粒和太空垃圾,需要高强度的材料,同时又要能抗宇宙高能射线的辐照,难熔材料在此有独特的优势。前苏联的“和平号”空间站和美国的航天飞机就大量采用了难熔材料。同样,海水的腐蚀作用是普通材料难以承受的,要想在海底建立永久性的人类环境,钛材是最好的选择,它不仅重量轻、强度高,而且具有良好的抗腐蚀性。
铌合金具有良好的抗血液腐蚀的能力,可制作血管支架。W、W-Mo、W-Re和W-石墨在医学上用作X光靶,拯救了无数人的生命。难熔金属还用于超声波粉碎结石的电极、多维自拼合射线光栅、伽玛刀及超声聚能刀的准直器以及其他先进医用设施中。
1.2.4 其他
难熔金属的许多非金属化合物,如WC、Cr2C3、TiC、TiN、VC、ZrC、HfC、NbC、TaC和TiCN等都是十分优异的硬质材料,作为硬质合金和金属陶瓷已成为现代工业的“牙齿”,在水泥、陶瓷等建材、矿山、石化、勘探、冶金和电力等领域仍有十分巨大的市场拓展能力。作为超高压模具的硬质合金顶锤为人造金刚石的广泛应用立下了汗马功劳,它需要同时承受6万个大气压和1 500℃的高温。
钨、钼作为优异的高温炉发热体、隔热屏、冶炼稀土用的坩埚和支撑件已广泛运用。大型钨、钼管以及钼电极、芯杆、料斗等已成功地取代铂在玻璃及玻纤行业取得了巨大的社会经济效益。钨基助熔剂用于钢铁、有色金属等碳、硫的分析。难熔金属还被用作纺织工业的电热刀、锌等冶炼的电热元件及测温套管。钨基金属陶瓷模具用于有色加工行业如挤铜等可提高工效几十倍。
新一代高温合金及金属间化合物中难熔金属的含量将进一步增加和优化,钽、铌强韧化的高温合金及金属间化合物将得到应用。铌还是潜在的超导材料。
此外,钛已成为继铁、铝之后的第三金属,在国民经济中发挥着巨大的作用,已超出了原难熔金属的范畴。

2 高性能难熔材料的发展趋势
当今世界难熔材料的研究已由传统的“高纯、超细、均质”演变为“纳米、复合、设计和集成制造”。通过这些先进技术,难熔金属不但可以保留自身诸如熔点高、耐腐蚀等优良性能,而且可以使其缺点例如易氧化、难制备等得到大大改善。
国外难熔金属已经历半个多世纪的发展,国内也有40多年的发展历史。难熔材料科学与工程的发展一直是紧随钢铁材料之后,并根据自身的特点发展适用技术的。难熔材料的研究主要集中在:材料的塑-脆转变行为、高温强度特性、制取工艺的最佳化、焊接、复合和增韧等。围绕这些内容所进行的技术研究和开发有:“净化”、“细化”、“强韧化”和“复合化”等。
2.1 “净化”研究
指难熔材料的纯化和加工过程中环境的净化程度的研究,其对改善钨、钼材料的塑性和降低其塑-脆转变温度具有十分重要的作用。因为氧、氮等有害杂质会导致塑-脆转变温度显著提高,增大材料脆性并难以加工。
我国难熔材料的“净化”大都从氧化物纯化开始。对于钨,通过溶剂萃取、离子交换和多次再结晶工艺,提高APT的化学纯度。现能生产纯度高于99.95%和杂质总含量低于100mg/kg的APT,钨粉纯度大于99.99%。
国外正在通过原子分子技术制备更高纯度的难熔材料,难熔材料纯净度的提高将改善其致命的脆性和易氧化性。而且,现代超大规模集成电路技术所需的高纯难熔金属及单晶都用高纯粉末制备。
2.2 “细化”研究
难熔材料的细化主要是指粉末细微化,这对难熔材料有着特殊重要意义,因为难熔材料大都通过粉末冶金工艺来制备,粉末的细化不仅可提高强度和韧性等力学性能,而且有利于烧结。国内主要扩大了亚微粉末和超细粉末的生产规模,因为制取超细颗粒组织的硬质合金,降低钨坯、钼坯的烧结温度和获得细晶组织的坯条需要这类粉末。
近年来,国内外还开展了纳米钨粉、钼粉和WC粉的研究和用纳米钨粉制取W-Cu复合材料和硬质合金的探索。
2.3 “强韧化”研究
“强韧化”研究旨在改善难熔金属材料的耐热强度和韧性。多年来,进行了掺杂条件选择、掺杂蓝钨还原、粉末粒度和分布的控制等重要研究,希望能获得更高的再结晶温度和高温强度。强化分两类:单一强化(使用一种强化剂)和复合强化(使用两种或两种以上强化剂)。Mo-La2O3系和Mo-La2O3-CeO2系材料的强韧化研究,开发出焊接性能优异的电极产品取代了W-ThO2系放射性材料,还研制出Mo-La2O3合金窄带,用于灯泡玻璃封接,性能优于目前大量使用的纯钼窄带。目前添加稀土及其氧化物的难熔合金已成为重要研究课题。
2.4 “复合化”研究
“复合化”概念在难熔材料研究和开发中已被普遍认识,它包括结构复合、机制复合和组织复合。目前,世界各国正致力于发展多元复合的难熔材料,它具有优良的综合性能。
2.5 活化烧结研究
难熔材料熔点很高,烧结困难。活化烧结旨在降低烧结温度、提高综合性能。尤其是钨的活化烧结更有实用意义。添加镍的活化烧结的研究已进行了多年,近年来在添加纳米粉方面取得了长足的进展,如添加5%纳米钨粉,可使钨的烧结温度降低200℃左右,而力学性能提高10%左右。
2.6 制备工艺及装备的研究
制备工艺及装备越来越受到世界各国的重视,许多先进的制备方法已用到难熔材料工业中并取得了显著成效。主要有等静压、等离子、高真空、高能粒子流、超声成形、微波烧结、电磁共振及单晶技术等。

3 我国在难熔材料领域的机遇、挑战与对策
下一世纪,由于难熔材料性能上的扬长抑短,其应用领域将进一步拓展,其中钽、铌和锆的增长最为迅速。同时,电子信息、能源和动力机械中的难熔材料用量将大幅度上升,预计将增长2~3倍。因此,高性能难熔材料的市场前景十分广阔。
我国的难熔材料资源十分丰富。已探明的钨、钼、钽、铌的工业储量均居世界前列。从资源上看,可以说难熔材料工业属于我国的优势产业之一。国内替代进口和提升产品层次,凭借我国难熔材料资源优势开拓国际市场更是大有可为。
我国难熔材料工业从新中国成立至80年代初经历了起步、崛起、工业化和稳定提高四个发展阶段之后形成了较完整的生产和科研体系。80年代中期起又跨进了一个新的发展时期,一个以科研开发提高深度加工水平和提高经济效益为主的发展战略正在深入实施。主要成就体现在:
(1)生产能力和产量有了很大提高,截止1995年,全国已形成年产近7 000t的难熔材料制品生产能力,已占世界同类制品总生产能力的30%~40%。近3年实际产量近4 700t,已占世界总产量的1/3左右;
(2)产品品种和结构有了很大改善;
(3)加工工艺有了长足进步;
(4)经过攻关,一批成果已应用于国防军工、航空航天、电子信息、能源、石化、冶金和核工业等重要领域。
然而,在其研究开发、深加工和品种结构上与世界发达国家相比还有很大差距,主要体现在:
(1)新材料、新工艺、新装备以及基础性研究薄弱;
(2)新产品开发不足;
(3)厂家多、单体规模小、劳动生产率低;
(4)装备急待更新;
(5)研究仪器和设备日益老化和短缺,难以恰当表征和评价难熔材料;
(6)缺乏对自己富有资源的珍惜和保护,资源浪费严重,综合利用率低。
因此,根据我国难熔材料工业的现状和面临的形势,今后我国难熔材料的发展方向应是满足国内各种需求,扩大精品输出,重点发展特纯、特异、特大、特薄和特精产品,实施精品战略。
难熔材料工业发展目标就是要实现由初级产品数量扩大为主到结构优化为主的战略转变。战略对策应是加速实现难熔金属工业发展战略的转变,确立可持续发展的战略思想,并将其贯穿到科研开发、制备加工、使用性能和市场4个关键环节中去。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2007-06-22
详细的组分是机密,永远也不会公布的,大致的情形还是可以知道的

美制M1系列坦克,主装甲是以贫铀装甲为核心的多层复合装甲,用铀238参入镍钢中制造,中间层有陶瓷装甲以及吸收撞击能量的弹性层(凯夫拉纤维???),内侧防碎甲弹的韧性层

美制M2布雷德利步兵战车,外侧爆炸反应装甲,内侧普通复合装甲

美M113装甲车,外层铝合金装甲,内层陶瓷装甲

俄制T72,5层复合装甲,内外层普通镍钢装甲,中间层陶瓷及塑料复合装甲

中国69,稀土装甲,伊拉克自己附加了镍钢装甲

伊的装甲车,俄的BMP、中国的63式,基本是镍钢装甲
第2个回答  2007-06-21
是生物钢

生物钢指的是羊奶钢,也指牛奶钢。羊奶与牛奶,本来与钢铁风马牛不相及,但科学家却将它们巧妙地结合起来了。

1997年初,美国生物学家安妮·穆尔发现,在美国南部有一种称为“黑寡妇”的蜘蛛,它吐出的丝比现在所知道的任何蜘蛛丝的强度都高,而且这种蜘蛛可以吐出两种不同类型的丝织成蜘蛛网,第一种丝在拉断之前,可以延伸27%,它的强度竟达到其他蜘蛛丝的2倍;第二种丝在拉断之前很少延伸,却具有很高的防断裂强度,由这种蜘蛛丝织成的布,比制造防弹背心所用的纤维的强度还高得多。“黑寡妇”蜘蛛丝的优良性能,很快引起科学家兴趣,他们设想,要是有一种办法能生产像蜘蛛丝那样的高强度纤维该多好。

科学家想到让牛奶的蛋白基因中含有“黑寡妇”蜘蛛丝的蛋白基因,于是就先找山羊进行转基因的科学实验。让山羊与“黑寡妇”蜘蛛“联姻”,将蜘蛛蛋白基因,注入一只经过特殊培育的褐色山羊体内,在这只山羊产下的奶中,有大量柔滑的蛋白质纤维,提取这些纤维,就可以生产衣服。

实践表明,由转基因羊奶纤维织出的布,比防弹衣的强度还大十几倍。这种超强坚韧的物质,是阻挡枪弹射击的理想材料,也可以用来制造坦克、飞机与装甲车,以及作为军事建筑物的理想“防弹衣”。根据国外的资料报道,一只羊每月产下的奶提取的纤维,可以制成一件防弹背心。美国正在研究利用蜘蛛丝的专家称,利用这种纤维制成的2.5厘米粗的绳子,足以让一架准备着陆的战斗机完全停下来。

科学家给这种物质取名叫“生物钢”。羊奶与牛奶变成的“生物钢”,不仅有钢铁的强度,而且还可以生物降解,不会带来环境污染,可替代引起白色污染的高强度包装塑料和商业用渔网,以及用于医学方面的手术线或人造肌肤。科学家设想,如果让转基因的山羊大量繁殖,就会生产出大量的生物钢用于工农业生产与国防战略,考虑到山羊对植被的破坏性,对牛进行转基因实验的前途更为广阔,一头牛的产奶量比一只山羊的产奶量高得多。

参考资料:http://baike.baidu.com/view/50695.htm

第3个回答  2007-06-21
这个实在是军事机密,恐怕世界上都没几个人知道的,你在等10年,等那边公布了再说,不过装甲里肯定有复合塑料;铅钛合金;低碳钢<0.01%;高碳钢,含碳量大于0.01%小于0.5%;玻璃纤维肯定会有;还有复合陶瓷。具体成分比还不得而知,但坦克装甲车等车辆的装甲成分也是不一样的。
顺便说一下2楼那个,你说的可能还没到大规模生产的地步呢。
第4个回答  2007-07-02
生物钢指的是羊奶钢,也指牛奶钢。羊奶与牛奶,本来与钢铁风马牛不相及,但科学家却将它们巧妙地结合起来了。
相似回答