机床的误差包括哪些方面

如题所述

1、加工误差

加工误差是指被加工工件达到的实际几何参数(尺寸、形状和位置)对设计几何参数的偏离值。在生产实际中,影响加工精度的工艺因素是错综复杂的。对于某些加工误差问题,不能仅用单因素分析法来解决,而需要用概率统计方法进行综合分析,找出产生加工误差的原因,加以消除。

2、机床空间几何误差

机床空间几何误差指的是数控机床加工过程中在三维坐标中引起的几何方面的误差。

3、热误差

热误差是由于设备或机器由于热变形而产生的与预期效果之间的差异,通常是指导致的加工误差或运动误差。我们所说的热误差通常是指机床的热误差。

扩展资料

其中,机床几何误差、热误差和力误差占总误差的65%,是影响数控机床加工精度的主要误差因素。不同的工况下各误差源所占比例是有区别的,如越是精密的机床或精密的加工,热误差所占比例越大。

机床误差运动学分析方法:

图解法:简单、直观、精度低、求系列位置时繁琐。

解析法-正好与以上相反。

实验法-试凑法,配合连杆曲线图册,用于解决实现预定轨迹问题。

思路:由机构的几何条件,建立机构的位置方程,然后就位置方程对时间求一阶导数,得速度方程,求二阶导数得到机构的加速度方程。

参考资料来源:百度百科-加工误差

参考资料来源:百度百科-机床空间几何误差

参考资料来源:百度百科-热误差

温馨提示:答案为网友推荐,仅供参考
第1个回答  2015-11-27
  机床的误差有精度误差,几何误差等。
  数控机床的精度误差,主要包括有:定位误差,重复定位误差,反向差值,返参考点误差,反向间隙等指标。
  机床的几何误差
  加工中刀具相对于工件的成形运动一般都是通过机床完成的,因此,工件的加工精度在很大程度上取决于机床的精度。机床制造误差对工件加工精度影响较大的有:主轴回转误差、导轨误差和传动链误差。机床的磨损将使机床工作精度下降。
  (1)主轴回转误差
  机床主轴是装夹工件或刀具的基准,并将运动和动力传给工件或刀具,主轴回转误差将直接影响被加工工件的精度。
  主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均回转轴线的变动量。它可分解为径向圆跳动、轴向窜动和角度摆动三种基本形式。
  产生主轴径向回转误差的主要原因有:主轴几段轴颈的同轴度误差、轴承本身的各种误差、轴承之间的同轴度误差、主轴绕度等。但它们对主轴径向回转精度的影响。大小随加工方式的不同而不同。
  譬如,在采用滑动轴承结构为主轴的车床上车削外圆时,切削力F的作用方向可认为大体上时不变的,在切削力F的作用下,主轴颈以不同的部位和轴承内径的某一固定部位相接触,此时主轴颈的圆度误差对主轴径向回转精度影响较大,而轴承内径的圆度误差对主轴径向回转精度的影响则不大;在镗床上镗孔时,由于切削力F的作用方向随着主轴的回转而回转,在切削力F的作用下,主轴总是以其轴颈某一固定部位与轴承内表面的不同部位接触,因此,轴承内表面的圆度误差对主轴径向回转精度影响较大,而主轴颈圆度误差的影响则不大。
  (2)采用滑动轴承时主轴的径向圆跳动
  产生轴向窜动的主要原因是主轴轴肩端面和轴承承载端面对主轴回转轴线有垂直度误差。
  不同的加工方法,主轴回转误差所引起的的加工误差也不同。在车床上加工外圆和内孔时,主轴径向回转误差可以引起工件的圆度和圆柱度误差,但对加工工件端面则 无直接影响。主轴轴向回转误差对加工外圆和内孔的影响不大,但对所加工端面的垂直度及平面度则有较大的影响。在车螺纹时,主轴向回转误差可使被加工螺纹的 导程产生周期性误差。
  适当提高主轴及箱体的制造精度,选用高精度的轴承,提高主轴部件的装配精度,对高速主轴部件进行平衡,对滚动轴承进行预紧等,均可提高机床主轴的回转精度。
  (3)导轨误差
  导轨是机床上确定各机床部件相对位置关系的基准,也是机床运动的基准。车床导轨的精度要求主要有以下三个方面:在水平面内的直线度;在垂直面内的直线度;前后导轨的平行度(扭曲)。
  卧式车床导轨在水平面内的直线度误差△1将直接反映在被加工工件表面的法线方向(加工误差的敏感方向)上,对加工精度的影响最大。卧式车床导轨在垂直面内的直线度误差△2可引起被加工工件的形状误差和尺寸误差。但△2对加工精度的影响要比△1小得多。若因△2而使刀尖由a下降至b,不难推得工件半径R的变化量。
  当前后导轨存在平行度误差(扭曲)时,刀架运动时会产生摆动,刀尖的运动轨迹是一条空间曲线,使工件产生形状误差。当前后导轨有了扭曲误差△3之后,由几何关系可求得△y≈(H/B)△3。一般车床的H/B≈2/3,车床前后导轨的平行度误差对加工精度的影响很大。
  (4)卧式车床导轨直线度误差
  除了导轨本身的制造误差外,导轨的不均匀磨损和安装质量,也使造成导轨误差的重要因素。导轨磨损是机床精度下降的主要原因之一。
  (5)传动链误差
  传动链误差是指传动链始末两端传动元件间相对运动的误差。一般用传动链末端元件的转角误差来衡量。
  刀具的几何误差
  刀具误差对加工精度的影响随刀具种类的不同而不同。采用定尺寸刀具成形刀具展成刀具加工时,刀具的制造误差会直接影响工件的加工精度;而对一般刀具(如车刀等),其制造误差对工件加工精度无直接影响。
  任何刀具在切削过程中,都不可避免地要产生磨损,并由此引起工件尺寸和形状地改变。正确地选用刀具材料和选用新型耐磨地刀具材料,合理地选用刀具几何参数和 切削用量,正确地刃磨刀具,正确地采用冷却液等,均可有效地减少刀具地尺寸磨损。必要时还可采用补偿装置对刀具尺寸磨损进行自动补偿。
  夹具的几何误差
  夹具的作用时使工件相当于刀具和机床具有正确的位置,因此夹具的制造误差对工件的加工精度(特别使位置精度)有很大影响。
第2个回答  2013-04-09
1.1 机床的原始制造误差
是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所引起的机床运动误差,是数控机床几何误差产生的主要原因。
1.2 机床的控制系统误差
包括机床轴系的伺服误差(轮廓跟随误差),数控插补算法误差。
1.3 热变形误差
由于机床的内部热源和环境热扰动导致机床的结构热变形而产生的误差。
1.4切削负荷造成工艺系统变形所导致的误差
包括机床、刀具、工件和夹具变形所导致的误差。这种误差又称为“让刀”,它造成加工零件的形状畸变,尤其当加工薄壁工件或使用细长刀具时,这一误差更为严重。
1.5 机床的振动误差
在切削加工时,数控机床由于工艺的柔性和工序的多变,其运行状态有更大的可能性落入不稳定区域,从而激起强烈的颤振。导致加工工件的表面质量恶化和几何形状误差。
1.6 检测系统的测试误差
包括以下几个方面:
(1)由于测量传感器的制造误差及其在机床上的安装误差引起的测量传感器反馈系统本身的误差;
(2)由于机床零件和机构误差以及在使用中的变形导致测量传感器出现的误差。
1.7 外界干扰误差
由于环境和运行工况的变化所引起的随机误差。
1.8 其它误差
如编程和操作错误带来的误差。
上面的误差可按照误差的特点和性质,归为两大类:即系统误差和随机误差。
数控机床的系统误差是机床本身固有的误差,具有可重复性。数控机床的几何误差是其主要组成部分,也具有可重复性。利用该特性,可对其进行“离线测量”,可采用“离线检测——开环补偿”的技术来加以修正和补偿,使其减小,达到机床精度强化的目的。
随机误差具有随机性,必须采用“在线检测——闭环补偿”的方法来消除随机误差对机床加工精度的影响,该方法对测量仪器、测量环境要求严格,难于推广。
2几何误差补偿技术
针对误差的不同类型,实施误差补偿可分为两大类。随机误差补偿要求“在线测量”,把误差检测装置直接安装在机床上,在机床工作的同时,实时地测出相应位置的误差值,用此误差值实时的对加工指令进行修正。随机误差补偿对机床的误差性质没有要求,能够同时对机床的随机误差和系统误差进行补偿。但需要一整套完整的高精度测量装置和其它相关的设备,成本太高,经济效益不好。文献[4] 进行了温度的在线测量和补偿,未能达到实际应用。系统误差补偿是用相应的仪器预先对机床进行检测,即通过“离线测量”得到机床工作空间指令位置的误差值,把它们作为机床坐标的函数。机床工作时,根据加工点的坐标,调出相应的误差值以进行修正。要求机床的稳定性要好,保证机床误差的确定性,以便于修正,经补偿后的机床精度取决于机床的重复性和环境条件变化。数控机床在正常情况下,重复精度远高于其空间综合误差,故系统误差的补偿可有效的提高机床的精度,甚至可以提高机床的精度等级。迄今为止,国内外对系统误差的补偿方法有很多,可分为以下几种方法:
2.1单项误差合成补偿法
这种补偿方法是以误差合成公式为理论依据,首先通过直接测量法测得机床的各项单项原始误差值,由误差合成公式计算补偿点的误差分量,从而实现对机床的误差补偿。对三坐标测量机进行位置误差测量的当属Leete, 运用三角几何关系,推导出了机床各坐标轴误差的表示方法,没有考虑转角的影响。较早进行误差补偿的应是Hocken教授,针对型号Moore 5-Z(1)的三坐标测量机,在16小时内,测量了工作空间内大量的点的误差,在此过程中考虑了温度的影响,并用最小二乘法对误差模型参数进行了辨识。由于机床运动的位置信号直接从激光干涉仪获得,考虑了角度和直线度误差的影响,获得比较满意的结果。1985年G. Zhang成功的对三坐标测量机进行了误差补偿。测量了工作台平面度误差,除在工作台边缘数值稍大,其它不超过1μm,验证了刚体假设的可靠性。使用激光干涉仪和水平仪测量得的21项误差,通过线性坐标变换进行误差合成,并实施了误差补偿。X-Y平面上测量试验表明,补偿前,在所有测量点中误差值大于20μm的点占20%,在补偿后,不超过20%的点的误差大于2μm,证明精度提高了近10倍。
除了坐标测量机的误差补偿以外,数控机床误差补偿的研究也取得了一定的成果。在1977年Schultschik教授运用矢量图的方法,分析了机床各部件误差及其对几何精度的影响,奠定了机床几何误差进一步研究的基础。Ferreira和其合作者也对该方法进行了研究,得出了机床几何误差的通用模型,对单项误差合成补偿法作出了贡献。J.Ni et al更进一步将该方法运用于在线的误差补偿,获得了比较理想的结果。Chen et al建立了32项误差模型,其中多余的11项是有关温度和机床原点误差参数,对卧式加工中心的补偿试验表明,精度提高10倍。Eung-Suk Lea et al几乎使用了同G. Zhang一样的测量方法,对三坐标Bridge port铣床21项误差进行了测量,运用误差合成法得出了误差模型,补偿后的结果分别用激光干涉仪和Renishaw的DBB系统进行了检验,证明机床精度得以提升。
2.2误差直接补偿法
这种方法要求精确地测出机床空间矢量误差,补偿精度要求越高,测量精度和测量的点数就要求越多,但要详尽地知道测量空间任意点的误差是不可能的,利用插值的方法求得补偿点的误差分量,进行误差修正,该种方法要求建立和补偿时一致的绝对测量坐标系。
1981年,Dufour和Groppetti在不同的载荷和温度条件下,对机床工作空间点的误差进行了测量,构成误差矢量矩阵,获得机床误差信息。将该误差矩阵存入计算机进行误差补偿。类似的研究主要有A.C.Okafor et al,通过测量机床工作空间内,标准参考件上多个点的相对误差,以第一个为基准点,然后换算成绝对坐标误差,通过插值的方法进行误差补偿,结果表明精度提高了2~4倍。Hooman则运用三维线性(LVTDS)测量装置,得到机床空间27个点的误差(分辨率0.25μm,重复精度1μm),进行了类似的工作。进一步考虑到温度的影响,每间隔1.2小时测量一次,共测量8次,对误差补偿结果进行了有关温度系数的修。这种方法的不足之处是测量工作量大,存储数据多。目前,还没有完全合适的仪器,也限制了该方法的进一步运用和发展。
2.3相对误差分解、合成补偿法
大多数误差测量方法只是得到了相对的综合误差,据此可以从中分解得到机床的单项误差。进一步利用误差合成的办法,对机床误差补偿是可行的。目前,国内外对这方面的研究也取得一定进展。
2000年美国Michigan大学Jun Ni教授指导的博士生Chen Guiquan做了这样的尝试,运用球杆仪(TBB)对三轴数控机床不同温度下的几何误差进行了测量,建立了快速的温度预报和误差补偿模型,进行了误差补偿。Christopher运用激光球杆仪(LBB),在30分钟内获得了机床的误差信息,建立了误差模型, 在9个月的时间间隔内,对误差补偿结果进行了5次评价,结果表明,通过软件误差补偿的方法可
第3个回答  2013-04-08
主要有:方向偏差 、定位精度等
下面是我为你收集的一些信息,供你参考:
机床的精度主要包括机床的几何精度、机床的定位精度和机床的切削精度。现根据我在日常工作中所积累的经验,就这些精度的检测项目、检测方法及注意事项进行综合的说明。
编辑本段数控机床的几何精度
数控机床的几何精度反映机床的关键机械零部件(如床身、溜板、立柱、主轴箱等)的几何形状误差及其组装后的几何形状误差,包括工作台面的平面度、各坐标方向上移动的相互垂直度、工作台面X、Y坐标方向上移动的平行度、主轴孔的径向圆跳动、主轴轴向的窜动、主轴箱沿z坐标轴心线方向移动时的主轴线平行度、主轴在z轴坐标方向移动的直线度和主轴回转轴心线对工作台面的垂直度等。
常用检测工具有精密水平尺、精密方箱、千分表或测微表、直角仪、平尺、高精度主轴芯棒及千分表杆磁力座等。
1.1 检测方法:
数控机床的几何精度的检测方法与普通机床的类似,检测要求较普通机床的要高。
1.2 检测时的注意事项:
(1)检测时,机床的基座应已完全固化。(2)检测时要尽量减小检测工具与检测方法的误差。(3)应按照相关的国家标准,先接通机床电源对机床进行预热,并让沿机床各坐标轴往复运动数次,使主轴以中速运行数分钟后再进行。(4)数控机床几何精度一般比普通机床高。普通机床用的检具、量具,往往因自身精度低,满足不了检测要求。且所用检测工具的精度等级要比被测的几何精度高一级。(5)几何精度必须在机床精调试后一次完成,不得调一项测一项,因为有些几何精度是相互联系与影响的。(6)对大型数控机床还应实施负荷试验,以检验机床是否达到设计承载能力;在负荷状态下各机构是否正常工作;机床的工作平稳性、准确性、可靠性是否达标。
另外,在负荷试验前后,均应检验机床的几何精度。有关工作精度的试验应于负荷试验后完成。
编辑本段数控机床的定位精度
[1]
数控机床的定位精度,是指所测机床运动部件在数控系统控制下运动时所能达到的位置精度。该精度与机床的几何精度一样,会对机床切削精度产生重要影响,特别会影响到孔隙加工时的孔距误差。
目前通常采用的数控机床位置精度标准是ISO230-2标准和国标GB10931-89。
测量直线运动的检测工具有:标准长度刻线尺、成组块规、测微仪、光学读数显微镜及双频激光干涉仪等。标准长度测量以双频激光干涉仪的测量结果为准。回转运动检测工具有360齿精密分度的标准转台或角度多面体、高精度圆光栅和平行光管等。目前通用的检测仪为双频激光干涉仪。
2.1 检测方法(用双频激光干涉仪时)
(1)安装与调节双频激光干涉仪。
(2)预热激光仪,然后输入测量参数。
(3)在机床处于运动状态下对机床的定位精度进行测量。
(4)输出数据处理结果。
2.2 检测时的注意事项:
(1)仪器在使用前应精确校正。
(2)螺距误差补偿,应在机床几何精度调整结束后再进行,以减少几何精度对定位精度的影响。
(3)进行螺距误差补偿时应使用高精度的检测仪器(如激光干涉仪),以便先测量再补偿,补偿后还应再测量,并应按相应的分析标准(VDI3441、JIS6330或GB10931-89)对测量数据进行分析,直到达到机床的定位精度要求。
(4)机床的螺距误差补偿方式包括线性轴补偿和旋转轴补偿这两种方式,可对直线轴和旋转工作台的定位精度分别补偿。
编辑本段切削精度
检查机床切削精度的检查,是在切削加工条件下对机床几何精度和定位精度的综合检查,包括单项加工精度检查和所加工的铸铁试样的精度检查(硬质合金刀具按标准切削用量切削)。检查项目一般包括:镗孔尺寸精度及表面粗糙度、镗孔的形状及孔距精度、端铣刀铣平面的精度、侧面铣刀铣侧面的直线精度、侧面铣刀铣侧面的圆度精度、旋转轴转90°侧面铣刀铣削的直角精度、两轴联动精度等。本回答被网友采纳
第4个回答  2018-06-27
导轨是机床上确定各机床部件相对位置关系的基准,也是机床运动的基准。车床导轨的精度要求主要有以下三个方面:在水平面内的直线度;在垂直面内的直线度;前后导轨的平行度(扭曲)。
卧式车床导轨在水平面内的直线度误差△1将直接反映在被加工工件表面的法线方向(加工误差的敏感方向)上,对加工精度的影响最大。卧式车床导轨在垂直面内的直线度误差△2可引起被加工工件的形状误差和尺寸误差。但△2对加工精度的影响要比△1小得多。若因△2而使刀尖由a下降至b,不难推得工件半径R的变化量。
当前后导轨存在平行度误差(扭曲)时,刀架运动时会产生摆动,刀尖的运动轨迹是一条空间曲线,使工件产生形状误差。当前后导轨有了扭曲误差△3之后,由几何关系可求得△y≈(H/B)△3。一般车床的H/B≈2/3,车床前后导轨的平行度误差对加工精度的影响很大。本回答被网友采纳
相似回答