太阳系是怎么形成的?

如题所述

大约在50亿年前,邻近地球的太阳星云(这个星的物质将要形成我们的太阳系)中有一颗质量比我们的太阳要大出许多倍的恒星,将要耗尽它核心部分的氢燃料时,由于缺少足够的能量来支撑自身,这颗恒星发生了坍缩。奇妙的是,这种坍缩产生了另一种类型的能量——重力势能,即使一个物体在重力作用下得以运动的那种能量。大量重力势能的释放,使恒星变得极其炽热,引燃了它的氦。在这个可怕的炼狱里,产生了从锂到铁的一切中等重量的元素。

后来,恒星的氦储备也耗竭了,其核心猛烈坍缩,发送出冲击波,穿过银河系的这部分空间。冲击波的能量快速地铸造出金、铀等重元素。把轻元素与中重元素转变为重元素的热核反应爆发出一颗超新星——犹如银河系中的原子弹。爆炸使恒星炸开,新生物质被抛射到外面的星云中去。随着超新星的爆炸,可怕的冲击波通过粉碎、压缩作用,产生了巨大的恒星云。

在附近的恒星云中,有一个恒星云变成了我们的太阳系。冲击波引起了不可思议的扰动,释放出各种类型的能量。重力把移动物体朝里面拉,发出重力势能。尘埃与气体颗粒越来越接近,小粒子形成大颗粒,同时释放出动能。运动中的物体具有动能,一旦静止不动时,动能就要释放出来。在宇宙碰撞事件中,动能是非常重要的角色。

几种过程互为补充,形成了我们的太阳系。重力继续不断地把物质吸引到星云的核心,进一步增加了它的重力。角动量(自旋物体的旋转能)使星云转得越来越慢。星云的大部分质量集中于其中心,剩余的一部分质量形成一个巨大的碟子,向外作螺旋运动。碟子里储存着太阳系的全部化学元素,包括“大爆炸”开始时的氢与氦,加上多次超新星爆发时生成的元素。制造生命的材料——简单有机分子在星云里也有。

太阳星碟不断分崩离析,一阵阵新释放的能量爆发使温度缓慢升高。大约5000万年以后,星碟核心达到极高温度,开始了由氢聚变为氦的热核反应。太阳燃烧起来了。

在燃烧的恒星中,气体压力大大增强后,重力坍缩停止了。太阳星碟中的温差很悬殊,从中心温度的20000℃以上直到边缘的-270℃,后者就是我们太阳系外缘目前的温度。物质在逐渐冷却的星碟中凝聚,重力把最重的元素集中到中心。这些金属与岩石化合物成了内行星的组成成分。与此同时,太阳附近较轻的气态元素汽化而挥发了。在星碟较冷的外缘,挥发物较为稳定,它们互相化合,产生了水、甲烷、氨等化合物。

在太阳星碟内部,分子碰撞后聚合成颗粒,后者又会产生砂砾、岩石与球石。物体增大以后,它们的撞击烈度也有所增加。千万年过去了,卵石成了微星,岩石的直径也可达到数十公里。较大的微星,其引力场已经相当强,足以吸引较小的物体。这样演变的结果,最后留下的只有庞然大物,而它们之间的碰撞逐步形成行星。内行星的生长、增大正是通过星碟内部不断添加金属与岩石而成。外行星则是由太阳系外缘部分的岩石与冰块的微星聚合而成的。

我们的太阳与行星大体上是在46亿年前同时形成的。科学家们认为行星的聚合需要1亿年左右,较大的外行星更长些,而较小的内行星则稍短些。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-01-14
我们的太阳系中有八大行星和三百多颗卫星,它们都围绕太阳有序运转。但起初并非如此,太阳系经历过一段漫长而激烈的演变。我们今天看到的太阳系,都是早期混沌状态的最终幸存者。太阳系自诞生之日起,就是按照同样的方式运转。
在50亿年前,银河系的某个深处。一大片星际云团在引力的作用下逐渐收缩,慢慢聚集成一团。而位于中心很小区域内的气体,在重力的挤压下,形成了具有超高密度和温度的球体,这就是原始的恒星。引力作用持续而强烈,气体和灰尘颗粒被不断吸入并相互加压,产生了越来越多的热量。在未来50万年的时间里,年轻的恒星将变得更小,并变得更亮、更热。核心区域的温度将逐渐达到1500万摄氏度。随着温度的逐渐升高,内核开始产生核聚变反应。巨大的能量向四周喷出,形成强大能量风。能量风吹离了那些太阳四周,尚未被来得及吸入的灰尘与气体。一颗恒星就是这样形成的,这颗恒星就是我们的太阳。
在太阳形成之后,大量远处的星际气体、岩石和冰封碎片,在太阳引力的作用下围绕太阳公转。而这些气体、尘埃、岩石和冰块碎片就是未来行星、卫星、小行星和彗星的萌芽。
在太空零重力状态下,尘埃颗粒不会四散悬浮,而是会在引力的作用下聚成一团。宇宙尘埃就是这样形成了行星。尘埃颗粒在引力的作用下碰撞并依靠引力和一些静电粘连在一起,聚集更大的尘埃团。接着形成岩块,接着形成巨石--
巨石越大,引力就越强,它开始依靠引力吞噬周围的一切,从而越长越大。巨石变得更大、更重,吞噬的岩块也越来越大,这一过程在天文学中被称为“吸积”。最后,有些巨石变成了行星。这是我们的太阳系46亿年轻发生的那一幕。新生的太阳系,大约有100颗行星围绕着太阳运行。新生的太阳系“交通拥挤”,碰撞不可避免。
所有的恒星系在诞生之初都处于暴力状态,我们的太阳系也不例外。太阳系最初有100颗初生的行星,那么100多颗行星是如何演化成现在的八大行星呢?行星会相互撞击,有些会彼此融合成更大的行星,有些则可能一起粉身碎骨。有些行星会变得巨大,碰撞也更为激烈。行星相互撞击,个头越大,越容易幸存。其它行星,则难免粉身碎骨。
某个庞然大物撞击了早期的水星,将水星的地壳剥离,只留下铁质的内核。早期的地球也未能幸免,一颗火星大小的行星撞击了早期的地球。虽然是侧面的撞击,但冲击波弹飞了地球的大部分地壳层。这些地壳碎片进入绕地轨道中,最终形成了现在的月球。而火星在早期也遭受了剧烈地撞击,因此它北半球的地壳比南半球的要薄。太阳系的很多行星,都能早到在早期混沌状态下,历经剧烈撞击的证据--
这些撞击减少了幼年行星的数量,同时它们的残骸,又能为幸存下来的行星“添砖加瓦”。最终,这100多颗幼年行星历经了大量的毁灭与碰撞后,有点融合成了现在的八大行星。有的则被更大的行星所俘获,称为这颗行星的卫星。而有的在混沌中幸存了下来,称为了小行星或者彗星,这就是太阳系诞生的方式。
其实,每一个太阳系(恒星系)的诞生,都要经历这样的过程,这就是它们诞生的方式。
第2个回答  2021-03-05
太阳系是原始太阳爆炸形成的
太阳系是怎样形成的,这是天文学的基础理论之一,这一基础理论搞不清楚,其他的很多天文学理论就搞不清楚。可到目前为止,太阳系是怎样形成的科学家们也没搞清楚。
地球膨裂说认为,太阳系是原始太阳爆炸形成的。46亿年前,太阳因内部的核聚变而发生爆炸,飞出许多熔融的火球,这些熔融的火球冷却后形成了行星、月亮、小行星、卫星和慧星,地球就是其中之一。一些大的火球在冷却的过程中,由于受到表面张力的作用,形成了球形。一些小的火球来不及收缩成球形,而冷却成了不规则的形状,形成了火星和木星间的小行星带、小行星。一些小一点的火球由于离大火球较近而被“俘获”,形成了大火球的卫星。一些离太阳较近的行星具有较重的物质;一些离太阳较远的行星,具有较轻的物质。这是因为离太阳较远的行星具有的液态氢等物质和太阳表面的熔融物质一样,并且较轻,而且处在太阳表面,因此它们在太阳爆炸时获得了较大的离心力,飞离太阳较远;距离太阳较近的行星具有的岩石、金属等物质和太阳表面下面的熔融物质一样,并且较重,而且处在太阳表面的下面,因此它们在太阳爆炸时获得了较小的离心力飞离太阳较近。
太阳系是原始太阳爆炸形成的证据:
1、质量守衡
经科学家们观测,太阳的质量是太阳系质量的99.87%,太阳系中行星的质量是太阳系的0.13% (1)。那么太阳的质量+太阳系中行星的质量=太阳系(原始太阳)的质量。也就是99.87%+0.13%=100%。这足已证明太阳系是原始太阳爆炸形成的。
2、角动量守衡
太阳角动量是太阳系的0.73% ,太阳系中行星的角动量是太阳系的99.27%
(2)。那么太阳的角动量+太阳系中行星的角动量=太阳系(原始太阳)的角动量。也就是0.73%+99.27%=100% 。这足已证明太阳系是原始太阳爆炸形成的。
3、能量守衡(转动能量守衡)
因为天文计算中不可能绝对准确,所以我们可以把天文学家们关于太阳、行星的质量,太阳、行星的角动量占太阳系的百分比看成是整数。也就是把太阳的质量看成是太阳系质量的99.%,太阳系中行星的质量看成是太阳系的1% 、太阳的角动量看成是太阳系的1%,太阳系中行星的角动量看成是太阳系的99% 。这也就是说太阳的质量和行星的质量之比为99/1,太阳的角动量和行星的角动量之比为1/99。这也就是说太阳的质量和行星的质量之比和太阳的角动量和行星的角动量之比互为倒数1/99=1/99。
我们设太阳的质量为m ,太阳系中行星的质量为m1 ,根据角动量公式mr2ω,设太阳的角动量为mr2ω ,太阳系中行星的角动量为m1r12ω1 。这样太阳的质量和行星的质量之比与太阳的角动量和行星的角动量之比互为倒数,也就是m1/ m= mr2ω/m1r12ω1 (1) 。
我们假设太阳系是原始太阳爆炸形成的。原始太阳爆炸形成太阳系之后,行星在太阳万有引力的拖拽下围绕太阳公转,太阳的转动能就会不断向行星转移,直至太阳的转动能等于行星的转动能为止。
根据实心球转动能公式E=2/5mr2ω2,我们设太阳的转动能为E=2/5mr2ω2 ,太阳系中行星的转动能为E1=2/5 m1r12ω12 。太阳的转动能等于行星的转动能,也就是2/5 mr2ω2 =2/5 m1r12ω12 , 也就是mr2ω2 = m1r12ω12 (2) 。
根据(2)式得出 mr2ω/m1r12ω1= ω1/ω (3)
根据(1)、(3)式得出 m1/ m =ω1/ω (4)
根据(1)、(4)式得出ω1/ω= mr2ω/m1r12ω1 (5)
根据(5)式得出mr2ω2 = m1r12ω12 (6)
根据(6)式得出我们假设的(2)式成立,太阳的转动能=太阳系中行星的转动能,太阳的转动能+太阳系中行星的转动能=原始太阳的转动能,转动能守衡。
4、行星的公转轨道是椭圆形。我们知道,椭圆形公转轨道是因为离心力大于向心力;圆形公转轨道是因为离心力等于向心力。以地球为例,地球在近日点自西向东公转时,离心力大于向心力,所以地球离太阳越来越远,到远日点时离心力等于向心力:地球在远日点自西向东公转时离心力小于向心力,所以地球离太阳越来越近,到近日点时离心力大于向心力。
地球的公转轨道为什么是椭圆形呢?地球膨裂说认为,因为地球是太阳发生爆炸飞离太阳的,所以离心力大于向心力。这就像人造卫星的初始地球轨道是椭圆形一样。因为人造卫星是从地球上发射出去的,人造卫星有一个飞离地球的离心力,而且离心力大于向心力,因此人造卫星的初始地球轨道是椭圆形。因为人造卫星是被月球“俘获”的,离心力等于向心力,所以人造卫星的初始月球轨道为是圆形
按照星云说的观点,太阳和行星是同源的,它们都是原始星云形成的,因此它们的公转轨道应该是圆形的。
5、八大行星的近日点都在太阳的同一侧。为什么八大行星的近日点都在太阳的同一侧呢?这是因为八大行星是在太阳近日点的一次爆炸时同时飞出的。这就像人造卫星的地球公转轨道近地点就是人造卫星的发射点一样。
按照星云说的观点,太阳和行星是同源的,不可能八大行星的近日点都在太阳的同一侧。
6、太阳系角动量分布异常
我们假设太阳系是原始太阳爆炸形成的,就应该太阳的转动能等于行星的转动能,也就是mr2ω2 = m1r12ω12 (2)。
根据(2)式得出mrω2 /m1r1ω12= r1/r (3)
根据(1)、(3)式得出 m1/ m = r1/r (4)
根据(1)、(4)式得出 r1/r = mrω2 /m1r1ω12 (5)
根据(5)式得出mr2ω2 = m1r12ω12 (6)
因为m1/ m =1/99,所以 mrω2 /m1r1ω12=1/99 。
也就是行星的角动量是太阳系角动量的99% 。
因此,太阳系角动量分布异常是原始太阳爆炸形成太阳系的证据。
如果太阳系是原始星云形成的,上述太阳系是原始太阳爆炸形成的6个证据就无法解释。
参考文献:
(1)、查百度:“太阳的质量是太阳系质量的99.87%,太阳系中行星的质量是太阳系的0.13%”。
(2)、查百度:“太阳角动量是太阳系的0.73% ,太阳系中行星的角动量是太阳系的99.27%”。
作者:赖柏林
第3个回答  2019-07-28
太阳系的起源和演化
一般以为行星系统是恒星形成过程的一部分,但是也有学者认为这是两颗恒星差一点撞击而成。最普遍的理论是说太阳系是从星云形成。
恒星形成的基本过程为此:
1.
星云中较密的核心部分变得太重,重心不稳定,开始分裂和崩溃坠落。一部分的重心能量变为放射的红外线,剩下的增加核心的温度。核心部分开始成为圆盘形状。
2.
当密度和温度道足够高,
氘融合燃烧开始发生,辐射的向外压力减慢(但不中止)临近其他核心崩溃。
3.
其他的原料继续下落到这一颗原恒星,它们的角动量的作用可能导致双极流程。
4.
最后,氢开始熔化在星的核心,外面剩余的包围材料被清除。
太阳星云这个假说,是1755年由伊曼努尔·康德提议。他说,太阳星云慢慢地转动,由于重力逐渐凝聚并且铺平,最终形成恒星和行星。一个相似的模型在1796年由拉普拉斯提出。
太阳星云开始直径大约100AU,质量是现在太阳的两三倍。在这个星云中,比较重的物质往中间落,积聚成块,是成为以后的行星。而星云外部越来越冷,因此靠里的行星有很多重的矿物质,而靠外的行星是气体或冰体。原太阳大约在46亿年前形成,以后八亿年中各个行星形成。
第4个回答  2020-06-23

太阳系是如何组成排列的呢?首先地球是太阳系的几大行星之一,离太阳最近的是水星,最远的是海王星,最亮的是金星。

相似回答