高分求一篇关于传感器应用的物理文章

查阅资料,举5个应用传感器研究物理问题的实例。要求详细记录实验的目的、器材、方法和结论。

高一寒假作业,800字足矣。满意的给300

《传感器原理及应用》

实验一 金属箔式应变片----单臂、半臂、全桥性能实验
实验目的:了解金属箔式应变片的应变效应,单臂、半臂、全电桥工作原理和性能。
基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为:ΔR/R电阻丝电阻相对变化, K为应变灵敏系数, ε=ΔL/L为电阻丝长度相对变化, 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部件受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压Uο1=Ek�0�2/4。在半桥性能实验中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压Uο2=Ek�0�2/2。在全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻力值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uο3=Ek�0�2。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
实验设备:应变式传感器实验模板、应变式传感器、砝码、数显表、±15V、±4V直流电源、万用表。
实验方法和要求:
根据电子电路知识,实验前设计出实验电路连线图。
独力完成实验电路连线。
找出这三种电桥输出电压与加负载重量之间的关系,并作出Vo=F(m)的关系曲线。
分析、计算三种不同桥路的系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差:δf1=Δm/yF·s×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:yF·s满量程输出平均值,此处为200g。

实验二 压阻式压力传感器的压力测量实验
实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。
基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。在压力作用下,根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压力变化。
实验设备:压力源、压力表、压阻式压力传感器、压力传感器实验模板、流量计、三通连接导管、数显单元、直流稳压源±4V、±15V。
实验方法和要求:
根据电子电路知识完成电路连接,主控箱内的气源部分、压缩泵、储气箱、流量计在主控箱内部已接好。将标准压力表放置传感器支架上,三通连接管中硬管一端插入主控板上的气源快速插座中(注意管子拉出时请用双指按住气源插座边缘往内压,则硬管可轻松拉出)。其余两根软导管分别与标准表和压力传感器接通。将传感器引线插头插入实验模板的插座中。
先松开流量计下端进气口调气阀的旋钮,开通流量计。
合上主控箱上的气源开关,启动压缩泵,此时可看到流量计中的滚珠浮子在向上浮起悬于玻璃管中。
逐步关小流量计旋钮,使标准压力表指示某一刻度,观察数显表显示电压的正、负,若为负值则对调传感器气咀接法。
仔细地逐步由小到大调节流量计旋钮,使压力显示在4—14KP之间,每上升1KP分别读取压力表读数,记下相应的数显表值。
计算本系统的灵敏度和非线性误差。
思考题:
如果本实验装置要成为一个压力计,则必须对其进行标定,如何标定?
实验三 压电式传感器测震动实验
实验目的:了解压电式传感器的测量震动的原理和方法。
基本原理:压电式传感器由惯性量块和受压的压电片等组成。(仔细观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的震动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
实验设备:震动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板、双线示波器。
实验方法和要求:
压电传感器已装在震动台面上。
将低频震荡器信号接入到台面三源板震动源的激励插孔。
将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感情实验模板电路输出端Vo1接R6。将压电传感器实验模板电路输出端V02接入低通滤波器输入端Vi,低通滤波器输出Vo与示波器相连。
合上主控箱电源开关,调节低频震荡器的频率和幅度旋钮使震动台震动,记录示波器波形。
改变低频震荡器的频率,记录输出波形变化。
用示波器的两个通道同时记录低通滤波器输入端和输出端波形。
求出压电传感器的振动方程。

实验四 差动变压器的性能实验
实验目的:差动变压器的工作原理和特性。
基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段和三段式,本实验是三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。
实验设备:差动变压器实验模板、测微头、双线示波器、差动变压器、音频信号源(音频震荡器)、直流电源、万用表。
实验方法和要求:
将差动变压器装在差动变压器实验模板上。
将传感器引线插头插入实验模板的插座中,接好外围电路,音频震荡器信号必须从主控箱中的Lv端子输出,调节音频震荡器的频率,输出频率为4—5KHZ(可用主控箱的频率表输入Fin来检测)。调节输出幅度为峰-峰值Vp-p=2V(可用示波器检测)
旋转测微头,使示波器第二通道显示的波形峰-峰值Vp-p最小,这时可以左右位移,假设其中一个方向为正位移,另一个方向位移为负,从Vp-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压Vp-p值,至少记录一个周期的数据。在实验过程中,注意左、右位移时,初、次级波形的相位关系。
在实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。画出输出电压峰值Vop-p—位移X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。

实验五 位移传感器特性实验
-霍尔式、电涡流式、电容式
(一)霍尔式传感器位移特性实验
实验目的:了解霍尔式传感器原理与应用。
基本原理:根据霍尔效应,霍尔电势Uн=KнIB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。
实验设备:霍尔传感器实验模板、霍尔传感器、直流电源、测微头、数显单元。
实验方法和要求:
将霍尔传感器安装于实验模板的支架上。再将传感器引线插头接入实验模板的插座中,完成实验电路的连线。
开启电源,调节测微头使霍尔片在磁钢中间位置并使数显表指示为零。
测微头向轴向方向推进,每转动0.2mm记下一个输出电压读数,直到读数近似不变。
作出V—X曲线,计算不同线性范围时的灵敏度和非线性误差。
思考题:
本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?
(二) 电涡流传感器位移实验
实验目的:了解电涡流传感器测量位移的工作原理和特性。
基本原理:通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
实验设备:电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。
实验方法和要求:
将电涡流传感器安装在实验模板的支架上。
观察传感器结构,这是一个平绕扁线圈。
将电涡流传感器输出线接入实验模板标有L的两端插孔中,作为震荡器的一个元件。
在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。
用连接导线从主控台接入±15V直流电源接到模板上标有+15V的插孔中。
使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm读一个数,直到输出电压几乎不变为止。
画出V—X曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,试计算量程为1mm、3mm及5mm时的灵敏度和线性度(可以用端基法或拟合直线法)。
思考题:
1、电涡流传感器的量程与哪些因素有关?
2、电涡流传感器进行非接触位移测量时,如何根据量程选用传感器。
(三) 电容式传感器的位移实验
实验目的:了解电容式传感器结构及其特点。
基本原理:利用平板电容C=εA/d和其它结构的关系式,通过相应的结构和测量电路可以选择 ε、 A、d三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变),测微小位移(d变)和测量液位(A变)等多种电容传感器。
实验设备:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压电源。
实验方法和要求:
将电容传感器装于电容传感器实验模板上,将传感器引线插头插入实验模板的插座中。
将电容传感器实验模板的输出端Vo1与数显表单元Vi相接,Rw调节到中间位置。
接入±15V电源,旋转测微头推进电容传感器动极板位置,每间隔0.2mm记下位移X与输出电压值。
计算电容传感器的系统灵敏度S和非线性误差δf
温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-03-13
光电传感器在玻璃机械上的应用
玻璃从原片到加工成客户所要求的最终产品(以汽车风挡玻璃为例),大致分为如下几道工艺:原片切割,磨边,清洗,丝网印刷,烘干,钢化模压成型,冷却。当然,在某些玻璃上还需要打孔,如果做中空玻璃,还需要有中空玻璃加工工艺。下面仅就上面所提到的几道加工工艺,简单介绍一下光电传感器在这些工艺中的应用。
  1. 原片切割
  现在的切割工艺一般都是由自动切割机来完成,机器上的两个光电传感器在检测到玻璃后,切割刀具就按照设定的程序来切割,此道工艺的产品就是一定尺寸的玻璃片。在这道工艺中,一般由两个光电传感器来进行玻璃的到位检测,见图片1。在此图片中,客户是使用两个光纤式传感器来检测的。而有的客户是使用S18或QS18系列直反式传感器来检测,检测距离在30-50mm。图2是另外一种形式的切割机,同样上面的光电传感器也是用来进行到位检测。

  2.磨边
  按照玻璃的摆放方式的不同,此道工艺又分为立式单边磨和水平式双边磨,立式单边磨每次只能对玻璃一边的两个角进行磨边处理,而水平双边磨机每次可以对玻璃的两个边的4个角进行磨边处理。在这道工艺中,光电传感器也是用来对玻璃进行到位检测,当检测到玻璃后,磨边用的砂轮开始转动,同时有水喷出进行冷却。有的机器是在玻璃的入口处安装1只S18或QS18直反式传感器或Q23SN6LP传感器来进行检测,也有的使用两只光电传感器来检测(见图片2)。另外根据所磨角度的不同,磨边机还分斜边机和直边机
3.清洗
   在此道工艺中,光电传感器同样是进行玻璃的到位检测,检测到玻璃后,启动电磁阀进行喷水清洗。
  
  4.丝网印刷
   玻璃上的各种图案数字等都是经过丝网印刷这道工艺印刷出来的,用丝网制作出各种图案后,将丝网放在平板玻璃上,用一种橡胶刮刀将油墨在丝网上水平刮动,即将图案印到了玻璃上。在这里光电传感器是对刮刀进行到位检测,一般有4只传感器,假设刮刀左右移动,则左右两侧各2只传感器,内侧的2只传感器是使刮刀减速,外侧的2只是限位控制,刮刀一般有马达来控制。
  
  5.烘干
   这道工艺是将印刷完的玻璃进行烘干,以使油墨牢固附着在玻璃上,一般烘干炉内的温度约100-200C。在这里没有见到光电传感器。
第2个回答  2014-03-13
光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化。早期的用来检测物体有无的光电传感器是一种小的金属圆柱形设备,发射器带一个校准镜头,将光聚焦射向接收器,接收器出电缆将这套装置接到一个真空管放大器上。在金属圆筒内有一个小的白炽灯做为光源。这些小而坚固的白炽灯传感器就是今天光电传感器的雏形。
  
  led(发光二极管)

  发光二极管最早出现在19世纪60年代,现在我们可以经常在电气和电子设备上看到这些二极管做为指示灯来用。led就是一种半导体元件,其电气性能与普通二极管相同,不同之处在于当给led通电流时,它会发光。由于led是固态的,所以它能延长传感器的使用寿命。因而使用led的光电传感器能被做得更小,且比白炽灯传感器更可靠。不象白炽灯那样,led抗震动抗冲击,并且没有灯丝。另外,led所发出的光能只相当于同尺寸白炽灯所产生光能的一部分。(激光二极管除外,它与普通led的原理相同,但能产生几倍的光能,并能达到更远的检测距离)。led能发射人眼看不到的红外光,也能发射可见的绿光、黄光、红光、蓝光、蓝绿光或白光。
  
  经调制的led传感器
  
  1970年,人们发现led还有一个比寿命长更好的优点,就是它能够以非常快的速度来开关,开关速度可达到khz。将接收器的放大器调制到发射器的调制频率,那么它就只能对以此频率振动的光信号进行放大。

  我们可以将光波的调制比喻成无线电波的传送和接收。将收音机调到某台,就可以忽略其他的无线电波信号。经过调制的led发射器就类似于无线电波发射器,其接收器就相当于收音机。

  人们常常有一个误解:认为由于红外光led发出的红外光是看不到的,那么红外光的能量肯定会很强。经过调制的光电传感器的能量的大小与led光波的波长无太大关系。一个led发出的光能很少,经过调制才将其变得能量很高。一个未经调制的传感器只有通过使用长焦距镜头的机械屏蔽手段,使接收器只能接收到发射器发出的光,才能使其能量变得很高。相比之下,经过调制的接收器能忽略周围的光,只对自己的光或具有相同调制频率的光做出响应。
  未经调制的传感器用来检测周围的光线或红外光的辐射,如刚出炉的红热瓶子,在这种应用场合如果使用其它的传感器,可能会有误动作。

  如果一个金属发射出的光比周围的光强很多的话,那么它就可以被周围光源接收器可靠检测到。周围光源接收器也可以用来检测室外光。

  但是并不是说经调制的传感器就一定不受周围光的干扰,当使用在强光环境下时就会有问题。例如,未经过调制的光电传感器,当把它直接指向阳光时,它能正常动作。我们每个人都知道,用一块有放大作用的玻璃将阳光聚集在一张纸上时,很容易就会把纸点燃。设想将玻璃替换成传感器的镜头,将纸替换成光电三极管,这样我们就很容易理解为什么将调制的接收器指向阳光时它就不能工作了,这是周围光源使其饱和了。

  调制的led改进了光电传感器的设计,增大了检测距离,扩展了光束的角度,人们逐渐接受了这种可靠易于对准的光束。到1980年,非调制的光电传感器逐步就退出了历史舞台。

  红外光led是效率最高的光束,同时也是在光谱上与光电三极管最匹配的光束。

  但是有些传感器需要用来区分颜色(如色标检测),这就需要用可见光源。
  
  在早期,色标传感器使用白炽灯做光源,使用光电池接收器,直到后来发明了高效的可见光led。现在,多数的色标传感器都是使用经调制的各种颜色的可见光led发射器。经调制的传感器往往牺牲了响应速度以获取更长的检测距离,这是因为检测距离是一个非常重要的参数。未经调制的传感器可以用来检测小的物体或动作非常快的物体,这些场合要求的响应速度都非常快。但是,现在高速的调制传感器也可以提供非常快的响应速度,能满足大多数的检测应用。
  
  超声波传感器
  
  声波传感器所发射和接收的声波,其振动频率都超过了人耳所能听到的范围。它是通过计算声波从发射,经被测物反射回到接收器所需要的时间,来判断物体的位置。对于对射式超声波传感器,如果物体挡住了从发射器到接收器的声波,则传感器就会检测到物体。与光电传感器不同,超声波传感器不受被测物透明度和反光率的影响,因此在许多使用超声波传感器的场合就不适合使用光电传感器来检测。
  
  光纤
  
  安装空间非常有限或使用环境非常恶劣的情况下,我们可以考虑使用光纤。光纤与传感器配套使用,是无源元件,另外,光纤不受任何电磁信号的干扰,并且能使传感器的电子元件与其他电的干扰相隔离。

  光纤有一根塑料光芯或玻璃光芯,光芯外面包一层金属外皮。这层金属外皮的密度比光芯要低,因而折射率低。光束照在这两种材料的边界处(入射角在一定范围内,),被全部反射回来。根据光学原理,所有光束都可以由光纤来传输。

  两条入射光束(入射角在接受角以内)沿光纤长度方向经多次反射后,从另一端射出。另一条入射角超出接受角范围的入射光,损失在金属外皮内。这个接受角比两倍的最大入射角略大,这是因为光纤在从空气射入密度较大的光纤材料中时会有轻微的折射。光在光纤内部的传输不受光纤是否弯曲的影响(弯曲半径要大于最小弯曲半径)。大多数光纤是可弯曲的,很容易安装在狭小的空间。

  玻璃光纤

  玻璃光纤由一束非常细(直径约50μm)的玻璃纤维丝组成。典型的光缆由几百根单独的带金属外皮玻璃光纤组成,光缆外部有一层护套保护。光缆的端部有各种尺寸和外形,并且浇注了坚固的透明树脂。检测面经过光学打磨,非常平滑。这道精心的打磨工艺能显著提高光纤束之间的光耦合效率。

  玻璃光纤内的光纤束可以是紧凑布置的,也可随意布置。紧凑布置的玻璃光纤通常用在医疗设备或管道镜上。每一根光纤从一端到另一端都需要精心布置,这样才能在另一端得到非常清晰的图像。由于这种光纤费用非常昂贵并且多数的光纤应用场合并不需要得到一个非常清晰的图像,所以多数的玻璃光纤其光纤束是随意布置的,这种光纤就非常便宜了,当然其所得到的图像也只是一些光。

  玻璃光纤外部的保护层通常是柔性的不锈钢护套,也有的是pvc或其他柔性塑料材料。有些特殊的光纤可用于特殊的空间或环境,其检测头做成不同的形状以适用于不同的检测要求。

  玻璃光纤坚固并且性能可靠,可使用在高温和有化学成分的环境中,它可以传输可见光和红外光。常见的问题就是由于经常弯曲或弯曲半径过小而导致玻璃丝折断,对于这种应用场合,我们推荐使用塑料光纤。
  
  塑料光纤

  塑料光纤由单根的光纤束(典型光束直径为0.25到1.5mm)构成,通常有pvc外皮。它能安装在狭小的空间并且能弯成很小的角度。

  多数的塑料光纤其检测头都做成探针形或带螺纹的圆柱形,另一端未做加工以方便客户根据使用将其剪短。邦纳公司的塑料光纤都配有一个光纤刀。不像玻璃光纤,塑料光纤具有较高的柔性,带防护外皮的塑料光纤适于安装在往复运动的机械结构上。塑料光纤吸收一定波长的光波,包括红外光,因而塑料光纤只能传输可见光。

  与玻璃光纤相比,塑料光纤易受高温,化学物质和溶剂的影响。

  对射式和直反式光纤玻璃光纤和塑料光纤既有“单根的”-对射式,也有“分叉的”-直反式。单根光纤可以将光从发射器传输到检测区域,或从检测区域传输到接收器。分叉式的光纤有两个明显的分支,可分别传输发射光和接收光,使传感器既可以通过一个分支将发射光传输到检测区域,同时又通过另一个分支将反射光传输回接收器。

  直反式的玻璃光纤,其检测头处的光纤束是随意布置的。直反式的塑料光纤,其光纤束是沿光纤长度方向一根挨一根布置。

  光纤的特殊应用

  由于光纤受使用环境影响小并且抗电磁干扰,因而能被用在一些特殊的场合,如:适用于真空环境下的真空传导光纤(vft)和适用于爆炸环境下的光纤。在这两个应用中,特制的光纤安装在特殊的环境中,经一个法兰引出来接到外面的传感器上,光纤和法兰的尺寸多种多样。本安型传感器,如namur型的传感器,可直接用在特殊或有爆炸性危险的环境中。
第3个回答  2014-03-13
实例我知道好多,传感器,我今年高二,才刚刚学完这一章,你们上这么快的啊
相似回答