椭圆的标准方程是什么?

双曲线

共分两种情况:

当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0); 

当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0); 其中a^2-c^2=b^2

拓展资料:

1、如果在一个平面内一个动点到两个定点的距离的和等于定长,那么这个动点的轨迹叫做椭圆。

2、椭圆的图像如果在直角坐标系中表示,那么上述定义中两个定点被定义在了x轴。若将两个定点改在y轴,可以用相同方法求出另一个椭圆的标准方程:

3、在方程中,所设的称为长轴长,称为短轴长,而所设的定点称为焦点,那么称为焦距。在假设的过程中,假设了,如果不这样假设,会发现得不到椭圆。当时,这个动点的轨迹是一个线段;当时,根本得不到实际存在的轨迹,而这时,其轨迹称为虚椭圆。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2017-07-17

椭圆的标准方程有两种,取决于焦点所在的坐标轴:

1)焦点在X轴时,标准方程为:x²/a²+y²/b²=1 (a>b>0)

2)焦点在Y轴时,标准方程为:y²/a²+x²/b²=1 (a>b>0)

椭圆是平面上到两定点的距离之和为常值的点之轨迹, 也可定义为到定点距离与到定直线间距离之比为一个小于1的常值的点之轨迹。它是圆锥曲线的一种,即圆锥与平面的截线。 

基本性质:

1、范围:焦点在x轴上-a≤x≤a,-b≤y≤b;焦点在y轴上-b≤x≤b, -a≤y≤a

2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

3、顶点:(a,0)(-a,0)(0,b)(0,-b)

4、离心率:e=c/a或 e=√(1-b^2/a²)

5、离心率范围:0<e<1

6、离心率越大椭圆就越扁,越小则越接近于圆。

7、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)

8、(m为实数)为离心率相同的椭圆。

9、P为椭圆上的一点,a-c≤PF1(或PF2)≤a+c。

10.椭圆的周长等于特定的正弦曲线在一个周期内的长度。

第2个回答  2013-09-01
定义
椭圆是一种圆锥曲线(也有人叫圆锥截线的)
1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);
2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的;
[编辑本段]标准方程
高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。
椭圆的标准方程有两种,取决于焦点所在的坐标轴:
1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)
2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b>0)
其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1
[编辑本段]公式
椭圆的面积公式
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).
或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).
椭圆的周长公式
椭圆周长没有公式,有积分式或无限项展开式。
椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如
L = ∫[0,π/2]4a * sqrt(1-(e*cost)^2)dt≈2π√((a^2+b^2)/2) [椭圆近似周长], 其中a为椭圆长半轴,e为离心率
椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则
e=PF/PL
椭圆的准线方程
x=±a^2/C
椭圆的离心率公式
e=c/a(e<1,因为2a>2c)
椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/C)的距离,数值=b^2/c
椭圆焦半径公式 |PF1|=a+ex0 |PF2|=a-ex0
椭圆过右焦点的半径r=a-ex
过左焦点的半径r=a+ex
椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两焦点A,B之间的距离,数值=2b^2/a
点与椭圆位置关系 点M(x0,y0) 椭圆 x^2/a^2+y^2/b^2=1
点在圆内: x0^2/a^2+y0^2/b^2<1
点在圆上: x0^2/a^2+y0^2/b^2=1
点在圆外: x0^2/a^2+y0^2/b^2>1
直线与椭圆位置关系
y=kx+m ①
x^2/a^2+y^2/b^2=1 ②
由①②可推出x^2/a^2+(kx+m)^2/b^2=1
相切△=0
相离△<0无交点
相交△>0 可利用弦长公式:A(x1,y1) B(x2,y2)
|AB|=d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2
椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b^2/a
[编辑本段]椭圆参数方程的应用
求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解
相关性质
由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。
例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):
将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。
设两点为F1、F2
对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2
则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2
由定义1知:截面是一个椭圆,且以F1、F2为焦点
用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆
椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。
-----关于圆锥截线的某些历史:圆锥截缐的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截缐的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册《圆锥截缐论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲缐的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲缐;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运\行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截缐不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3.(1)求椭圆C的方程.(2)直线l:y=x+1与椭圆交与a,b两点,P为椭圆上一点,求△PAB面积的最大值.(3)设直线l与椭圆C交与A,B两点,坐标原点O到直线l的距离为√3/2,求△AOB面积的最大值. 分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c==√2,b=√(a�0�5-c�0�5),b=1,方程是x^2/3+y^2/1=1,二,要求面积,显然已ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=-0.5.利用弦长公式有√(1+k^2))[x2-x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大,过p做弦的平行线,可以 发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求的m=2,-2.结合图形得m=-2.x=1.5,y=-0.5,p(1.5,-0.5),直线方程x-y+1=0,利用点到直线的距离公式求的3√2/2,面积1/2*3√2/2*3√2/2=9/4,本回答被网友采纳
第3个回答  2019-12-23
椭圆的标准方程共分两种情况[1]:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);
其中a^2-c^2=b^2
推导:PF1+PF2>F1F2(P为椭圆上的点 F为焦点)
中文名
椭圆标准方程
外文名
Standard equation of the ellipse
别称
线条
表达式
x^2/a^2+y^2/b^2=1
提出者
数学家
方程推导
设椭圆的两个焦点分别为F1,F2,它们之间的距离为2c,椭圆上任意一点到F1,F2的距离和为2a(2a>2c)。

以F1,F2所在直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy,则F1,F2的坐标分别为(-c,0),(c,0)。
设M(x,y)为椭圆上任意一点,根据椭圆定义知
|MF1|+|MF2|=2a,(a>0)


将方程两边同时平方,化简得

两边再平方,化简得



,设

,得

两边同除以 ,得

这个形式是椭圆的标准方程。
通常认为圆是椭圆的一种特殊情况[2] 。
非标准方程
其方程是二元二次方程,可以利用二元二次方程的性质进行计算,分析其特性[3] 。
几何性质
X,Y的范围
当焦点在X轴时 -a≤x≤a,-b≤y≤b
当焦点在Y轴时 -b≤x≤b,-a≤y≤a
对称性
不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。
顶点:
焦点在X轴时:长轴顶点:(-a,0),(a,0)
短轴顶点:(0,b),(0,-b)
焦点在Y轴时:长轴顶点:(0,-a),(0,a)
短轴顶点:(b,0),(-b,0)
注意长短轴分别代表哪一条轴,在此容易引起混乱,还需数形结合逐步理解透彻[4] 。
焦点:
当焦点在X轴上时焦点坐标F1(-c,0)F2(c,0)
当焦点在Y轴上时焦点坐标F1(0,-c)F2(0,c)
计算方法
((其中 分别是椭圆的长半轴、短半轴的长,可由圆的面积可推导出来)或 (其中 分别是椭圆的长轴,短轴的长)[5] 。
圆和椭圆之间的关系:
椭圆包括圆,圆是特殊的椭圆。
参考资料
[1] 曹才翰.中国中学教学百科全书:数学卷[M].沈阳:沈阳出版社
[2] 沈金兴. 数学文化视角下的椭圆标准方程推导[J]. 数学通讯, 2015(8):本回答被网友采纳
第4个回答  2018-05-31

共分两种情况:

①当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);

②当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);

其中a^2-c^2=b^2。

拓展资料:

椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。

椭圆的基本性质

1、范围:焦点在x  轴上  -a≤x≤a,-b≤y≤b  ;焦点在y  轴上  -b≤x≤b, -a≤y≤a。

2、对称性:关于X轴对称,Y轴对称,关于原点中心对称

3、顶点:(a,0)(-a,0)(0,b)(0,-b)。

4、离心率:e=c/a  或 e=√(1-b^2/a2)。

5、离心率范围:0<e<1。

6、离心率越小越接近于圆,越大则椭圆就越扁。

7、焦点(当中心为原点时):(-c,0),(c,0)或(0,c),(0,-c)

8、 P为椭圆上的一点,a-c≤PF1(或PF2)≤a+c。

9、椭圆的周长等于特定的正弦曲线在一个周期内的长度。

本回答被网友采纳
相似回答