a(n) = aq^(n-1),
a = a(1) = S(1) > 0,
q = 1æ¶ï¼S(n) = na > 0.满足è¦æ±ã
qä¸çäº1æ¶ï¼
S(n) = a[q^n-1]/(q-1).
q>1æ¶ï¼q^n-1>0,q-1>0, S(n) = a[q^n-1]/(q-1) >0. 满足è¦æ±ã
-1<q<1æ¶ï¼q^n - 1 < 0, q - 1 < 0, 满足è¦æ±ã
q = -1æ¶ï¼S(2m) = a[(-1)^(2m) - 1]/(-1-1) = 0,ä¸æ»¡è¶³è¦æ±ã
q < -1æ¶ï¼S(2m) = a[q^(2m) - 1]/(q-1) = a[(q^2)^m - 1]/(q-1),
(q^2)^m - 1 > 0, q - 1 < 0, S(2m) < 0, ä¸æ»¡è¶³è¦æ±ã
å æ¤ï¼
qçåå¼èå´ä¸ºq>-1.
b(n) = a(n+2) - 1.5a(n+1) = aq^(n+1) - 1.5aq^n = aq^n[q-1.5].
q = 1æ¶ï¼b(n) = a(-0.5), T(n) = -na/2, S(n) = na > -na/2 = T(n).
q > -1ä¸qä¸çäº1æ¶ï¼T(n) = aq(q-1.5)[q^n-1]/(q-1), S(n) = a[q^n-1]/(q-1).
T(n) - S(n) = a[q^n-1]/(q-1)[q(q-1.5) - 1] = a[q^n-1][2q^2 - 3q - 2]/[2(q-1)] = a[q^n-1][2q+1][q-2]/[2(q-1)]
-1 < q < -1/2æ¶ï¼T(n) - S(n) = a[q^n-1][2q+1][q-2]/[2(q-1)] > 0,
T(n) > S(n).
q = -1/2æ¶ï¼T(n) - S(n) = a[q^n-1][2q+1][q-2]/[2(q-1)] = 0,
T(n) = S(n).
-1/2 < q < 1æ¶ï¼T(n) - S(n) = a[q^n-1][2q+1][q-2]/[2(q-1)] < 0,
T(n) < S(n).
1 < q < 2æ¶ï¼T(n) - S(n) = a[q^n-1][2q+1][q-2]/[2(q-1)] < 0,
T(n) < S(n).
q = 2æ¶ï¼T(n) - S(n) = a[q^n-1][2q+1][q-2]/[2(q-1)] = 0,
T(n) = S(n).
q > 2æ¶ï¼T(n) - S(n) = a[q^n-1][2q+1][q-2]/[2(q-1)] > 0,
T(n) > S(n).
综åï¼æ
-1 < q < -1/2æ¶ï¼T(n) > S(n).
q = -1/2æ¶ï¼T(n) = S(n).
-1/2 < q < 2æ¶ï¼T(n) < S(n).
q = 2æ¶ï¼T(n) = S(n).
q > 2æ¶ï¼T(n) > S(n).
温馨提示:答案为网友推荐,仅供参考