一元二次的方程用公式法怎么解?

如题所述

第1个回答  2012-05-28
公式也要分情况:例1.解方程(1)(x-2)^2
  =9(2)9x^2-24x+16=11
  分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。
  (1)解:(x-2)^2=9
  ∴x-2=±√9
  ∴x-2=±3
  ∴x1=3+2 x2=-3+2
  ∴x1=5 x2= -1
  (2)解: 9x^2;-24x+16=11
  ∴(3x-4)^2=11
  ∴3x-4=±√11
  ∴x=﹙ 4±√11﹚/3
  ∴原方程的解为x1=﹙4﹢√11﹚/3,x2= ﹙4﹣√11﹚/3
  2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)
  先将常数c移到方程右边:ax^2+bx=-c
  将二次项系数化为1:x^2+ba/x = - c/a
  方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2= - c/a+( b/2a)^2
  方程左边成为一个完全平方式:(x+b/2a )^2 = -c/a﹢﹙b/2a)^2;
  当b^2-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚^2;
  ∴x=﹛﹣b±[√﹙b^2;﹣4ac﹚]﹜/2a(这就是求根公式)
  例2.用配方法解方程 3x^2-4x-2=0
  解:将常数项移到方程右边 3x^2-4x=2
  将二次项系数化为1:x^2-﹙4/3﹚x= ?
  方程两边都加上一次项系数一半的平方:x^2-﹙4/3﹚x+( 4/6)^2=? +(4/6 )^2
  配方:(x-4/6)^2= ? +(4/6 )^2
  直接开平方得:x-4/6=± √[? +(4/6 )^2 ]
  ∴x= 4/6± √[? +(4/6 )^2 ]
  ∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ .
  3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2-4ac的值,当b^2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b^2-4ac)]/(2a) , (b^2-4ac≥0)就可得到方程的根。
  例3.用公式法解方程 2x^2-8x=-5
  解:将方程化为一般形式:2x^2-8x+5=0
  ∴a=2, b=-8, c=5
  b^2-4ac=(-8)^2-4×2×5=64-40=24>0
  ∴x=[(-b±√(b^2-4ac)]/(2a)
  ∴原方程的解为x?=,x?= .
  4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
  例4.用因式分解法解下列方程:
  (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0
  (3) 6x^2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
  (1)解:(x+3)(x-6)=-8 化简整理得
  x^2-3x-10=0 (方程左边为二次三项式,右边为零)
  (x-5)(x+2)=0 (方程左边分解因式)
  ∴x-5=0或x+2=0 (转化成两个一元一次方程)
  ∴x^1=5,x^2=-2是原方程的解。
  (2)解:2x^2+3x=0
  x(2x+3)=0 (用提公因式法将方程左边分解因式)
  ∴x=0或2x+3=0 (转化成两个一元一次方程)
  ∴x1=0,x2=-是原方程的解。
  注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
  (3)解:6x^2+5x-50=0
  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
  ∴2x-5=0或3x+10=0
  ∴x1=, x2=- 是原方程的解。
  (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
  (x-2)(x-2 )=0
  ∴x1=2 ,x2=2是原方程的解。
  小结:
  一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
  直接开平方法是最基本的方法。
  公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
  配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法
  解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
  例5.用适当的方法解下列方程。(选学)
  (1)4(x+2)^2-9(x-3)2=0 (2)x^2+(2-)x+ -3=0
  (3) x^2-2 x=- (4)4x^2-4mx-10x+m2+5m+6=0
  分析:(1)首先应观察题目有无特点,不要盲目地先做乘法运算。观察后发现,方程左边可用平方差公式分解因式,化成两个一次因式的乘积。
  (2)可用十字相乘法将方程左边因式分解。
  (3)化成一般形式后利用公式法解。
  (4)把方程变形为 4x^2-2(2m+5)x+(m+2)(m+3)=0,然后可利用十字相乘法因式分解。
  (1)解:4(x+2)^2-9(x-3)2=0
  [2(x+2)+3(x-3)][2(x+2)-3(x-3)]=0
  (5x-5)(-x+13)=0
  5x-5=0或-x+13=0
  ∴x1=1,x2=13
  (2)解: x^2+(2- )x+ -3=0
  [x-(-3)](x-1)=0
  x-(-3)=0或x-1=0
  ∴x1=-3,x2=1
  (3)解:x2-2 x=-
  x2-2 x+ =0 (先化成一般形式)
  △=(-2 )2-4 ×=12-8=4>0
  ∴x=
  ∴x1=,x2=
  (4)解:4x^2-4mx-10x+m2+5m+6=0
  4x^2-2(2m+5)x+(m+2)(m+3)=0
  [2x-(m+2)][2x-(m+3)]=0
  2x-(m+2)=0或2x-(m+3)=0
  ∴x1=(m+2) /2,x2=(m+3)/2.
  例6.求方程3(x+1)2+5(x+1)(x-4)+2(x-4)2=0的二根。 (选学)
  分析:此方程如果先做乘方,乘法,合并同类项化成一般形式后再做将会比较繁琐,仔细观察题目,我们发现如果把x+1和x-4分别看作一个整体,则方程左边可用十字相乘法分解因式(实际上是运用换元的方法)
  解:[3(x+1)+2(x-4)][(x+1)+(x-4)]=0
  即 (5x-5)(2x-3)=0
  ∴5(x-1)(2x-3)=0
  (x-1)(2x-3)=0
  ∴x-1=0或2x-3=0
  ∴x1=1,x2=3/2是原方程的解。
  例7.用配方法解关于x的一元二次方程x2+px+q=0
  解:x2+px+q=0可变形为
  x2+px=-q (常数项移到方程右边)
  x2+px+( )2=-q+()2 (方程两边都加上一次项系数一半的平方)
  (x+)2= (配方)
  当p2-4q≥0时,≥0(必须对p2-4q进行分类讨论)
  ∴x=- ±=
  ∴x1= ,x2=
  当p2-4q<0时,△<0此时原方程无实根。
  说明:本题是含有字母系数的方程,题目中对p, q没有附加条件,因此在解题过程中应随时注意对字母取值的要求,必要时进行分类讨论。
参见:百度百科追问

只要公式法的公式 那么多怎么看的啊?

追答

本来一元二次方程就多

第2个回答  2012-05-29
例如ax^2+bx+c=0,直接代入公式:x=+/-(√b^2-4ac)/2a
第3个回答  2012-05-30
公式就是无论何种情况都可以用的。上面这位同学是正确的
第4个回答  2012-05-28
初二会学的 别急追问

公式法是啥!!!我忘记 了!!! 来个简单明了的

相似回答