函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
基本初等函数包括幂函数、指数函数、对数函数、三角函数、反三角函数和常数函数。
幂函数
幂函数是形如y=xa的函数,a可以是自然数、有理数,也可以是任意实数或复数。
指数函数
指数函数是形如y=ax(a>0 ,a≠1)的函数,定义域为 ,值域为 ,a>1 时是严格单调增加的函数,0<a<1时函数单调减少,图像过定点(0,1)。
对数函数
,称a为底 ,定义域为 ,值域为 。a>1 时是严格单调增加的,0<a<1时是严格单减的。不论a为何值,对数函数的图形均过点(1,0),对数函数与指数函数互为反函数。以10为底的对数称为常用对数,简记为 。在科学技术中普遍使用的是以e为底的对数,即自然对数,记作 。
三角函数
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数(Trigonometric)也是常用的工具。
它有六种基本函数:正弦函数,余弦函数,正切函数,余切函数,正割函数和余割函数。
反三角函数
反三角函数包括反正弦函数,反余弦函数,反正切函数,反余切函数,反正割函数和反余割函数。
常数函数
常数函数(也称常值函数)是指值不发生改变(即是常数)的函数。例如,我们有函数f(x)=4,因为f映射任意的值到4,因此f是一个常数。更一般地,对一个函数f: A→B,如果对A内所有的x和y,都有f(x)=f(y),那么,f是一个常数函数。
常用函数有如下几种:
实函数
实函数(Real function),指定义域和值域均为实数域的函数。实函数的特性之一是可以在坐标上画出图形。
双曲函数
隐函数
若能由方程F(x,y)=0 确定y为x的函数y=f(x),即 ,就称y是x的隐函数。
而此处方程F(x,y )= 0 并非函数。
多元函数
多元函数(n-元函数)是指输入值为n-元组的函数。或者说,若一函数的输入值域为n个集合的笛卡尔积的子集,这函数就是n-元函数。
其他
此外经常用到的函数还有高斯函数,阶梯函数和脉冲函数。