不定方程的常见类型

如题所述

⑴求不定方程的整数解;
⑵判定不定方程是否有解;
⑶判定不定方程的解的个数(有限个还是无限个)。 二元一次不定方程的一般形式为ax+by=c。其中 a,b,c 是整数,ab ≠ 0。此方程有整数解的充分必要条件是a、b的最大公约数整除c。设、是该方程的一组整数解,那么该方程的所有整数解可表示为.
S(≥2)元一次不定方程的一般形式为a1x1+a2x2+…+asxs=n0a1,…,as,n为整数,且a1…as≠0。此方程有整数解的充分必要条件是a1,…,as的最大公约数整除n。
埃拉托塞尼筛法产生的素数普遍公式是一次不定方程 公元前300年,古希腊数学家欧几里得就发现了数论的本质是素数,他自己证明了有无穷多个素数,公元前250年古希腊数学家埃拉托塞尼发明了一种筛法:
一,“要得到不大于某个自然数N的所有素数,只要在2---N中将不大于√N的素数的倍数全部划去即可”。
二,后来人们将上面的内容等价转换:“如果N是合数,则它有一个因子d满足1<d≤√N”。(《基础数论》13页,U杜德利著,上海科技出版社)..
三,再将二的内容等价转换:“若自然数N不能被不大于(根号)√N的任何素数整除,则N是一个素数”。见(代数学辞典[上海教育出版社]1985年。屉部贞世朗编。259页)。
四,上面这句话的汉字可以等价转换成为用英文字母表达的公式:
N=p1m1+a1=p2m2+a2=......=pkmk+ak。⑴
其中p1,p2,.....,pk表示顺序素数2,3,5,,,,,。a≠0。即N不能是2m+0,3m+0,5m+0,...,pkm+0形。若N<P(k+1)的平方 [注:后面的1,2,3,....,k,(k+1)是脚标,由于打印不出来,凡字母后面的数字或者i与k都是脚标] ,则N是一个素数。
五可以把(1)等价转换成为用同余式组表示:
N≡a1(modp1), N≡a2(modp2),.....,N≡ak(modpk)。⑵
例如,29,29不能够被根号29以下的任何素数2,3,5整除,29=2x14+1=3x9+2=5x5+4。29≡1(mod2),29≡2(mod3), 29≡4(mod5)。29小于7的平方49,所以29是一个素数。
以后平方用“*”表示,即:㎡=m*。
由于⑵的模p1,p2,....,pk 两两互素,根据孙子定理(中国剩余定理)知,⑵在p1p2.....pk范围内有唯一解。
例如k=1时,N=2m+1,解得N=3,5,7。求得了(3,3*)区间的全部素数。
k=2时,N=2m+1=3m+1,解得N=7,13,19; N=2m+1=3m+2,解得N=5,11,17,23。求得了(5,5*)区间的全部素数。
k=3时,
---------------------| 5m+1-|- 5m+2-| 5m+3,| 5m+4.|
---------------------|---------|----------|--------|---------|
n=2m+1=3m+1= |--31----|--7,37-|-13,43|--19----|
n=2m+1=3m+2= |-11,41-|-17,47-|--23---|---29---|
------------------------------------------------------------
求得了(7,7*)区间的全部素数。仿此下去可以求得任意大的数以内的全部素数。 二元二次不定方程本质上可以归结为求二次曲线(即圆锥曲线)的有理点或整点问题。
一类特殊的二次不定方程是x^2+y^2=z^2,其正整数解称商高数或勾股数或毕达哥拉斯数,中国《周髀算经》中有“勾广三,股修四,经隅五”之说,已经知道 (3,4,5)是一个解。刘徽在注《九章算术》中又给出了(5,12,13),(8,15,17), (7,24,25),(20,21,29)几组勾股数。它的全部正整数解已在16世纪前得到。这类方程本质上就是求椭圆上的有理点。
另一类特殊的二次不定方程是所谓佩尔方程x2-Dy2=1,D是非平方的正整数。利用连分数理论知此方程永远有解。这类方程就是求双曲线上的有理点。
最后一类就是平方剩余问题, 即求x^2-py=q的整数解, 用高斯的同余理论来描述,就是求x^2≡q(mod p)的剩余类解。高斯发现的著名二次互反律给出了次方程是否有解的判定方法。这类方程就相当于求抛物线上的整点。
圆锥曲线对应的不定方程求解可以看做椭圆曲线算术性质的一种特例。 对高于二次的不定方程,相当复杂。当n>2时,x^n+y^n=z^n没有非平凡的整数解 ,即著名的费马大定理,历经3个世纪 ,已由英国数学家安德鲁 ·维尔斯证明完全可以成立。
有一些高次方程同样无解:
多元高次不定方程
多元高次不定方程没有一般的解法,任何一种解法都只能解决一些特殊的不定方程,如利用二次
域来讨论一些特殊的不定方程的整数解.常用的解法
⑴代数恒等变形:如因式分解、配方、换元等;
⑵不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;
⑶同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;
⑷构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;
⑸无穷递推法。

温馨提示:答案为网友推荐,仅供参考
相似回答