第1个回答 2020-03-18
解法三:证明:设∠BDE=x 根据正弦定理得
BE/sinx=DE/sin30°
CD/sin(x+30°)=DE/sin40°
BE=CD 由上面两式得
sin(x+30°)/ sinx= sin40°/ sin30°即
sin(x+30°)= 2sinx sin40°
∴sin(x+30°)cos40°= 2sinx sin40°cos40°
= sinx sin80°
∴sin(x+30°)sin50°= sinx sin80°
积化和差得:
cos(x+80°)- cos(x-20°)= cos(x+80°)- cos(x-80°)
即cos(x-80°)- cos(x-20°)=0
和差化积得:
sin(x-50°)sin30°=0
∴x-50°=kπ (k∈Z)
又由于0<x<110°
∴x= 50°(肇东市第十中学刘奎军)