公式推导:
圆周长(c):圆的直径(D),那圆的周长(c)除以圆的直径(D)等于π,那利用乘法的意义,就等于π乘圆的直径(D)等于圆的'周长(C),C=πd。而同圆的直径(D)是圆的半径(r)的两倍,所以就圆的周长(c)等于2乘以π乘以圆的半径(r),C=2πr。
把圆平均分成若干份,可以拼成一个近似的长方形。长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)的平方乘以π,即S=πr2。
在没有发现“圆面积是它外切正方形面积的九分之七”之前,人们一直借用近似、接近、趋近或相当于圆的外切正n边形面积公式S=πR²替代圆面积公式(因为半径R不等于弦心距r)。
由于“圆面积s等于它直径d的三分之一平方的七倍”。
为此,圆的面积公式是:s=7(d/3)²。