地下水赋存规律和蓄水构造类型

如题所述

根据本次抗旱找水打井开展的工作,结合前人的成果资料,我们总结了巩义市地下水的赋存特征与分布规律,对不同类型地下水的定井成功率高进行了初步归纳,并分析了区域蓄积地下水的主要蓄水构造类型及其特征。

一、地下水赋存规律

巩义市基岩大面积出露,山地和丘陵区面积占总面积的90%左右,平原区面积则不足10%,整体属于低山丘陵地区。区内赋存的地下水以基岩地下水为主,但水量以平原区内的松散岩孔隙水最丰富。地下水赋存特征、分布规律、含水层岩性与定井成功率关系见表5-8。

表5-8 地下水类型、含水层分布与定井成功率

(一)平原区松散岩类孔隙水

平原区松散岩类孔隙水按分布位置的差异可进一步分为河流平原区和山前倾斜平原区两类。前者主要分布于伊洛河两岸和黄河南岸,地势平坦,松散层厚度大,岩性主要为砂性土、砂砾石等,赋存的地下水为松散岩类孔隙水,冲洪积形成的砂砾石可作为良好的含水层,大气降水的直接入渗或地下水侧向径流保障了含水层的补给来源;后者主要位于伊洛河两岸,地形起伏较大,冲沟切割较深,在冲洪积作用下,形成一定厚度的冲洪积卵砾石层,为较好的含水层,赋存松散层孔隙水,不过,山区倾斜平原不同地段的卵砾石层厚度与埋深变化较大,且分布的连续性差。

平原区松散岩类孔隙水按深度可进一步划分出浅层和深层水两类孔隙水。

1.浅层孔隙水(60m 以浅)

浅层含水层组由第四纪冲积、冲洪积、洪积成因的一套上细下粗或粗细相间的砂、砂卵砾石和泥质松散堆积物组成,一般埋藏深度小于60m。丘陵区的黄土中含水极微弱。按其富水程度分区如下:

(1)水量丰富区(单井涌水量1000~3000m3/d)

分布在黄河滩及阶地、伊洛河河谷、汜水河河谷及阶地、岗地等地段。黄河滩和阶地区含水层岩性以中、粗砂层为主,局部含卵砾石,砾径2~15cm,厚度30~60m;伊洛河河谷和阶地含水层岩性主要为砂卵砾石层,厚度8~30m。定井成功率高。

(2)水量中等区(单井涌水量100~1000m3/d)

分布在伊洛河一级阶地的后缘。含水层岩性为砂及含泥质砂卵砾石,一般厚10~15m,最薄8.8m,水位埋深6~10m。定井成功率较高。

(3)水量贫乏区(单井涌水量小于100m3/d)

分布在邙山、山前倾斜平原及山前黄土丘陵地区康店、沙鱼沟—北山口—芝田—鲁庄一带,地形起伏不平,冲沟切割较深。由于黄土厚度较大,通过大气降水渗入的地下水主要储存于中更新统黄土及钙结核层孔隙孔洞中,以下更新统砂质粘土或更新统黄土本身为相对隔水底板,地下水多为潜水,富水性一般较差。在较低凹处,是解决人畜用水的主要水源。近年由于大量开采中深层水,且和浅层混合开采,该层水多被疏干,定井成功率不高。

2.深层孔隙水

指埋藏在60m 以下至300m 深度内的地下水,主要分布在伊洛河以南的黄土丘陵区北部及山前倾斜平原区。深层水上部有厚度不等的粘土、亚粘土隔水层,使地下水多具有明显的承压性。

(1)水量丰富区(单井涌水量1000~3000m3/d)

分布在巩义市区、北山口-沙鱼沟、回郭镇-芝田以南、念子庄-罗口以北地带,含水层岩性为下更新统—新近系中细砂、粗砂、砂卵砾石层,多含泥质,局部半胶结。定井成功率较高。

(2)水量中等区(单井涌水量100~1000m3/d)

分布在富水区的南侧,东部位于站街—英峪南一带,西部位于鲁庄—西村一带。含水层岩性为中细砂、卵砾石、半胶结砂砾石等,厚度10~20m,水位埋深一般60~80m,最深可达100m。单井涌水量自南向北增大。定井成功率较高。

(二)丘陵区碳酸盐岩类裂隙岩溶水

碳酸盐岩裂隙岩溶水主要赋存于寒武系、奥陶系及石炭系碳酸盐岩的裂隙、溶隙和溶洞中,分布于东南部和南部的米河、新中、小关、大峪沟、核桃园、涉村、夹津口、西村等乡镇。在强烈构造作用影响下,裂隙岩溶发育但不均匀,在次一级构造破碎带赋存地下水。

1.水量中等区(单井涌水量大于240m3/d)

分布在东部的新中—米河一带及核桃园、涉村—夹津口一带,含水层为寒武系中、上统及奥陶系灰岩、白云质灰岩、白云岩。在构造有利地段,裂隙岩溶发育,含水较丰富,定井成功率较高。因矿山开采及矿坑排水造成区域地下水位下降,部分基岩含水层被疏干,造成部分地区定井成功率不高。

2.水量贫乏区(单井涌水量小于240m3/d)

该区主要分布在南部大面积灰岩裸露区,由于位置较高,地形切割强烈,地表岩溶发育,是岩溶水的补给区。大峪沟、竹林一带构造较少,裂隙岩溶不发育,故富水性较差。定井成功率不高。

(三)丘陵区基岩裂隙水

主要包括古、中元古界的变质岩裂隙水和二叠系、三叠系的碎屑岩裂隙水,分布在嵩山主峰和五指岭主峰北测、米河—小关—大峪沟以北及涉村—关帝庙以北。由于基岩山区地形起伏、沟谷深切,不利于降水入渗,地下水较为贫乏。定井成功率不高。

二、蓄水构造类型

蓄水构造系指由含水层与隔水层按着一定的有利于蓄水的构造形式组合而成的不同水文地质单元[16~18]。构成蓄水构造需要有3个基本要素:一是含水的岩层或岩体,二是相对隔水的岩层或岩体构成隔水边界,三是地下水的补给和排泄条件。根据区内已成水井含水层的蓄水特征,将本区内蓄水构造类型及蓄水条件分述如下:

(一)岩溶或接触-岩溶蓄水构造(韵沟井)

岩溶蓄水构造主要分布于碳酸盐岩区,部分地区可出现接触-岩溶蓄水构造。

接触-岩溶蓄水构造分布在巩义西南部韵沟至公川一线地区。该区出露下寒武统辛集组灰岩与中元古界马鞍山组石英砂岩,两者呈不整合接触。辛集组灰岩可溶性良好,在地表可见发育良好的溶洞和溶蚀裂隙,溶洞可达100cm×50cm,为良好的储水介质。下伏的紫红色石英砂岩,呈致密块状,具轻微变质现象,构成地下水的隔水边界。因此,灰岩的溶蚀裂隙与不整合接触面形成一定的储水空间。由于地下水流向自西往东,不整合接触面倾向为北西,故地下水流斜交于不整合接触面,进而在其接触部位蓄积,储存于灰岩的溶蚀裂隙中。该区地下水补给以大气降水为主,排泄方式主要为地下水径流与人工开采,局地以泉的形式排泄。

利用此类型的蓄水构造,在韵沟村钻探成井。钻孔位于韵沟村的沟谷低洼处,最终穿透辛集组灰岩至石英砂岩终孔,终孔深度187.4m。钻探结果显示灰岩岩心溶蚀现象良好,钻进过程中亦存在漏水现象。但在成井抽水试验过程中,地下水水位下降迅速,在15分钟内水位即下降了近120m,获得单井涌水量仅为122.4m3/d。其原因在于韵沟村地处分水岭附近,接受大气降水补给的区域小,补给条件差。灰岩岩心虽然溶蚀现象良好,但溶蚀裂隙与溶洞内充填部分粘性土,与较小的单井涌水量是相对应的。

(二)松散岩层蓄水构造

区内松散岩层蓄水构造主要分布于山前倾斜平原以及伊洛河与黄河的阶地地区,由粘性土层和冲洪积砂层、卵砾石层构成。含水层组由松散层中的冲洪积砂层和卵砾石层组成,隔水层为粘性土层。其富水程度主要受含水层厚度、砂砾卵石分选程度、松散程度等条件的控制,总体富水情况良好。

1.河流阶地松散岩层(龙尾井、康北井、蔬菜基地和黄河阶地各3口井)

在沿伊洛河和黄河展布的漫滩-阶地的过渡地区如芝田镇蔬菜基地、河洛镇裴峪村、河洛镇寺湾村等地,冲洪积砂层和卵砾石层厚度大,分布广泛,地下水位埋深约5m,单井涌水量可达1000~3000m3/d。补给来源为大气降水补给和径流补给,排泄方式为人工开采和径流排泄。

对于伊洛河南北两侧远离漫滩的阶地地区如孝义镇龙尾村、河洛镇康北村等地,在基岩面上覆厚度70~100m的古河道砂、卵砾石层,地表覆盖80~100m的黄土(伊洛河北部)或亚粘土(伊洛河南部),单井涌水量在700~1000m3/d。补给来源为大气降水补给和径流补给,排泄方式为人工开采和径流排泄。

2.山前倾斜平原松散岩层(常封井、铁匠炉井、源村井)

在山前冲洪积倾斜平原,砂层和卵砾石层厚度变化较大,分布不连续,单井涌水量约为500~1000m3/d。补给来源主要为山前地下水的径流补给,排泄方式为人工开采和径流排泄。位于北部的源村地区,卵砾石层厚度约70m,上覆80~120m的黄土,下伏三叠系砂岩,蓄水构造良好。但由于黄土层厚度大,阻碍了大气降水的直接补给,主要接受山前径流补给,单井涌水量496.8m3/d。位于巩义中部的常封地区,上覆亚粘土近50m,卵砾石层厚度大于50m,蓄水条件较好,单井涌水量607.2m3/d。在铁匠炉地区,基岩面上覆有100多米的卵砾石层,表层为亚粘土和粘土层,单井涌水量达11 20.8m3/d。上述看出,铁匠炉相比于山前冲洪积平原的其他地区,其单井涌水量相对较高,认为除了其卵砾石层厚度大的原因之外,主要是其东南侧约1.5km的沙鱼沟断裂为地下水补给提供了保障,这说明多种蓄水构造的共同作用有利于地下水的补给以增加单井涌水量。

(三)断裂蓄水构造

断裂构造作用诱发并促进基岩裂隙带或破碎带的发育,是基岩山区地下水赋存的主要场所。断裂构造蓄水部位与水量主要取决于断裂的力学性质、规模、岩性、破碎程度、含水岩组的区域含水性和补给条件等。在不同的力学性质、岩性等条件下,断裂破碎带与两侧的碎裂影响带均可成为蓄水部位。

1.断裂旁侧影响带蓄水(叶岭井、神南井)

区内断裂蓄水条件主要受五指岭断裂、沙鱼沟断裂、巩县断裂和站街断裂等的控制。断裂主要切割二、三叠系脆性地层,仅有五指岭和沙鱼沟断裂切割了寒武系、奥陶系等老地层。其中,五指岭断裂作为穿越整个巩义地区的大断裂,在其两侧均发育有一定数量的次级断裂,在其切割二、三叠系脆性地层的上下盘均发育富水部位。而在沙鱼沟断裂、巩县断裂和站街断裂,根据钻孔验证认为其旁侧富水带主要位于断裂或次级断裂的上盘部位。

在五指岭断裂两侧二叠系和三叠系脆性岩层分布区(如石英砂岩、砂质泥岩等),均可钻探成井,单井涌水量可达500~1000m3/d。在沙鱼沟断裂,上盘出露二叠系地层,岩性以砂岩、砂质泥岩与页岩为主,裂隙发育程度高,为地下水蓄积的主要部位,单井涌水量可达500m3/d左右。站街断裂位于北部的邙山黄土丘陵地区,黄土覆盖严重,下伏三叠系地层,岩性主要为砂岩和砂质泥岩,其上盘裂隙带和断裂破碎带为良好蓄水空间,单井涌水量500m3/d左右。巩县断裂沿北东向展布,倾向东南,地表多为第四系覆盖,且临近伊洛河平原,单井涌水量大于1000m3/d。

叶岭村位于五指岭断裂下盘的次级断裂影响带上,钻孔揭示150m 以下岩心裂隙发育且漏水情况良好,含水层主要为下伏三叠系的碎裂砂岩及少量卵砾石层,单井涌水量794.4m3/d。所收集的资料显示,同处邙山黄土丘陵的黑南村位于五指岭断裂的上盘裂隙带,在终孔深度为120m的情况下,获得单井涌水量1008m3/d,富水部位为下伏的三叠系砂岩裂隙破碎带。神南村位于巩县断裂上盘的裂隙带之上,获得单井涌水量1641.6m3/d。其断裂破碎带提供了地下水的蓄积空间,而上覆较薄的粘性土层以及临近伊洛河河谷平原地区则保证了地下水的补给。

2.断裂交汇影响带蓄水(张岭井)

在多条断裂的交汇部位,不同方向、不同规模的断裂致使岩石受力集中,岩石容易破碎,在交接部位形成一定范围的裂隙密集发育带,是地下水集中富集的部位。

张岭位于北部的邙山黄土丘陵地区,黄土覆盖严重,下伏三叠系,岩性主要为砂岩和砂质泥岩。该村靠近站街断裂与五指岭断裂的交汇部位,次级断裂发育,为良好蓄水空间。张岭钻孔位于次级断裂的上盘部位,在钻进深度253.4m的情况下获得单井出水量614.4m3/d,静止水位120.3m。而在该水井北东侧约1km 处,当地完成一眼近300m的钻孔。岩心完整程度高,漏水情况差,最终成井失败。究其原因在于钻探位置位于该次级断裂的下盘,且相对远离断裂,构造裂隙不发育,导水及蓄水条件差,验证了断裂上下盘构造裂隙与富水性的差异。

北山口镇西河与西头村同处于沙鱼沟断裂上盘,并在二叠系中以相近的钻进深度(近300m)成井。但由于两地受断裂构造影响程度大小的差异影响了地下水的蓄积,以致两地的单井涌水量存在明显差异。其中西河村单井涌水量960m3/d,西头村单井涌水量480m3/d,对应水位降深分别9m和98m,差异明显。究其原因在于西河村相比于西头村靠近沙鱼沟断裂,并邻近五指岭断裂,受到沙鱼沟断裂与五指岭断裂两者的交汇复合作用。两条断裂的交汇作用加剧了岩石的碎裂程度,扩大了地下水的储水空间和补给通道,致使西河村的单井涌水量相比西头村增加一倍。

33断裂破碎带蓄水(水道口井、山川井)

张性、张扭性断裂常形成结构疏、胶结和充填程度较低的断裂破碎带,其是地下水赋存的有利场所。在一定的补给条件下,是地下水良好的蓄水空间。

水道口位于沙峪沟断裂北端南侧次级断裂上盘,出露二叠系,岩性主要为砂质页岩和青灰色砂岩,裂隙发育程度相对较低。在钻进深度300m时进行初次抽水试验,单井涌水量仅约100m3/d左右。最终在钻进深度433m的情况下,才获得单井涌水量508.8m3/d。认为300m 以下为其主要断裂破碎带,为地下水主要的蓄水空间和输水通道。山川位于五指岭断裂上盘的次级断裂之上,含水层为次级断裂上的石英砂岩裂隙,在钻进深度170m的情况下,获得单井涌水量达1111.2m3/d。

因此,从以往成井资料及此次已成钻孔资料可以看出,区内断裂构造的蓄水部位主要位于断裂及次级断裂的上盘裂隙带或破碎带上,断裂破碎带或上盘裂隙带为其断裂构造蓄水部位,单井涌水量可达500~1000m3/d。而在断裂的下盘,裂隙发育程度低,蓄水条件整体相对较差,蓄水条件则相对较差,如沙鱼沟断裂。在沙鱼沟断裂的南端下盘部位出露寒武系或奥陶系,以往在该处施工的两眼近300m 钻孔未能成井,显示出在寒武系或奥陶系中较差的蓄水条件。

(四)单斜蓄水构造(李家窑井、五岭井、后村井)

区内基岩出露区、地形起伏大、沟谷深切,不利于大气降水的入渗。地下水的富集往往出现在低洼地段,因为低洼的地形特征在一定程度上可增加含水层组地下水的补给。这种类型地下水的补给来源以大气降水补给和侧向径流为主,排泄方式为人工开采和径流排泄。

在西村镇的李家窑村,出露倾向北西的单斜地层,岩性为二叠系的砂岩和砂质泥岩。在成井深度120m的情况下,获得单井涌水量907.2m3/d。该村沟谷的低洼地形起到了汇集大气降水的作用,增加了地下水的补给。同理,在西村镇五岭村,水井布置在两条沟谷的交汇处,沟谷侧壁基岩出露,裂隙发育。该井在成井深度256m的情况下,获得单井涌水量424.7m3/d,含水层组为二叠系的砂岩和砂质页岩。

涉村镇后村位于嵩山主峰和五指岭主峰的北侧低洼处,地处嵩山复背斜北翼且邻近五指岭断裂,在成井深度230m的情况下,获得单井涌水量612m3/d,含水层组为二叠系的砂岩,补给来源为山区大气降水的入渗补给与径流补给。

(五)基岩风化壳片状蓄水构造

基岩风化壳片状蓄水构造由元古宇变质岩表层风化带构成,且有第四系、新近系松散层覆盖区。地下水储存于基岩表层的风化裂隙中,其下部的完整基岩则构成隔水层。居民生活用水井深度一般小于20m,风化裂隙带厚度一般不超过10m。地下水富集部位位于地形低洼(盆地)地带。

综上所述,在巩义的南端中元古界石英砂岩与下寒武统灰岩的接触部位,分布有接触岩溶蓄水构造、基岩风化壳片状蓄水构造,蓄水条件良好。在涉村—西村一带的基岩出露区,嵩山背斜的合适部位存在裂隙发育地段,可形成单斜蓄水构造。在山前倾斜平原和河谷平原地区,松散层中的卵砾石层蓄积大量的地下水。而在受断裂构造控制的地区,极易形成断裂蓄水构造,其富水部位主要分布于断裂或次级断裂上盘的裂隙带。不过,在巩义东部大峪沟等地由于煤矿等矿产开采的缘故,断裂构造形成的储水空间已多被疏干,该区不以断裂蓄水构造为目标进行找水。同时,在邙山丘陵地区,钻探揭示地下水水位出现明显整体下降,在张岭和叶岭地区均可见轻微固结的砂层及砂卵石层。

可以看出,找水在于对各蓄水构造和赋存条件的判断,其依赖于地质、水文地质调查工作。只有在充分掌握地质构造、地形地貌、地层岩性等区域地质、水文地质条件的基础上,综合分析研究蓄水构造的三要素,再辅以物探手段加以验证才能找到合适的含水层位和井位。除此之外,还必须考虑当地经济的发展对地下水的蓄积所造成的影响,以免造成目标含水层已被疏干的现象。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2024-05-01
地下水,作为地球上宝贵的淡水资源之一,对人类的生存和发展至关重要。它广泛分布在地表以下的孔隙介质、裂隙以及溶洞中,而这些空间的形态和排列方式就构成了地下水的赋存规律和蓄水构造类型。
地下水赋存规律
地下水赋存规律是指地下水中各种物理化学性质随深度和空间分布变化的规律。主要包括:
垂直赋存规律:地下水一般呈层状分布,从地表向下依次可分为不饱和带、毛细带和饱和带。不饱和带上部为含气带,下部为含水带,饱和带则为地下水的主要赋存区。
水平赋存规律:地下水在平面方向的分布受到地质构造、水文地质条件的影响,呈现出不同的形态。常见的地下水流向是由高地向低地,由补给区向排泄区。
蓄水构造类型
蓄水构造类型是指地下水存在的空间形态和类型。根据孔隙介质的性质和地下水赋存的构造条件,可分为以下几种主要类型:
孔隙型蓄水构造:这是最常见的蓄水构造类型,是指地下水储存在松散或胶结的岩石孔隙中。典型的例子有砂岩、砾岩和砂砾石等。
裂隙型蓄水构造:是指地下水储存在岩石裂隙中。常见于基岩区或断裂带附近。
溶洞型蓄水构造:是指地下水储存在石灰岩或白云岩等可溶性岩石形成的溶洞中。洞穴系统发达的地区,地下水量往往较为丰富。
基岩风化带蓄水构造:是指地下水储存在基岩风化形成的松散物质中。常见的例子有残坡积、坡积物和冲积层。
人工蓄水构造:是指通过人工修建,形成地下水蓄水空间的构造,例如人工蓄水层、地下水库等。
了解地下水赋存规律和蓄水构造类型对地下水资源的开发利用至关重要。它可以帮助我们确定地下水资源的分布区域、储量大小和水文地质条件,从而制定合理的开采计划和保护措施。掌握这些规律也有助于防治地下水污染和枯竭,保障人类的可持续发展。本回答被网友采纳
相似回答