页岩气开发现状及开采技术分析

如题所述

史进1 吴晓东1 孟尚志2 莫日和2 赵军2

(1.中国石油大学(北京)石油工程教育部重点实验室 北京 102249 2.中联煤层气有限责任公司 北京 100011)

摘要:页岩气是一种储量巨大的非常规天然气,但是页岩气藏储层结构复杂,多为低孔、低渗型,开发技术要求很高。本文简述了国内外页岩气开发现状,分析了页岩气成藏机理以及开发特点,重点介绍了国外主要采用的页岩气开采技术,包括页岩气的储层评价技术、水平井钻井技术、完井技术以及压裂技术这几个方面,其中水平井钻井以及压裂技术是最为重要的。最后本文指出了中国页岩气开发急需解决的几个方面的问题。

关键词: 页岩气 开采技术 储层评价 水平井增产 完井技术 压裂技术

作者简介: 史进,1983 年生,男,汉族,山东淄博人,中国石油大学 ( 北京) 石油天然气工程学院博士生,主要从事煤层气、页岩气开发方面的研究工作。E mail: shijin886@163. com,电话: 18901289094。

Analysis on Current Development Situation and Exploitation Technology of Shale Gas

SHI Jin WU Xiaodong MENG Shangzhi MO Rihe ZHAO Jun

( 1. Petroleum engineering institute,China University of Petroleum,Beijing 102249, 2. China United Coalbed Methane Co. ,Ltd. ,Beijing 100011,China)

Abstract: The shale gas is a kind of non conventional with giant amount of reserves,but the shale reservoir has complex structure with low porosity and low Permeability ,so it needs advanced technology. This article sum- marizes current situation of shale gas development both in and abroad,analyses the gas generation and development characteristic of shale gas,mainly introduces gas exploration and development of technology,including reservoir e- valuation technology,horizontal well stimulation techniques,completion technology as well as fracturing tech- niques. At last,the paper points out the urged problem needed to be sloved for china's shale gas development.

Keywords: Shale gas; development technology; Reservoir evaluation; Horizontal well stimulation; comple- tion technology; fracturing techniques.

1 前言

地球上各种油气资源在地层分布的位置各不相同 ( 图1) ,随着全球能源的需求量增大,页岩气作为一种非常规能源越来越受到人们的重视。页岩气是指主体位于暗色泥页岩或高碳泥页岩中,以吸附或游离状态为主要存在方式的天然气聚集[1]。世界页岩气资源很丰富,但尚未得到广泛勘探开发,根本原因是致密页岩的渗透率一般很低。但近几年来,页岩气的开采已经成为全球资源开发的一个热点。由于页岩气的赋存、运移以及开采机理与普通天然气有很大的不同,所以在勘探开发技术方面与普通天然气也有很大的差别。

图1 各种油气资源分布示意图

2 国内外页岩气勘探开发现状

2.1 国外页岩气开发情况

国外的页岩气开发以美国为主,美国是目前世界上唯一商业化开发页岩气的国家。美国第一口页岩气井可追溯1821年,钻遇层位为泥盆系Dunkirk页岩[2],井深仅8.2m。19世纪80年代,美国东部地区的泥盆系页岩因临近天然气市场,在当时已经有相当大的产能规模。但此后产业一直不甚活跃。直到20世纪70年代末,因为国际市场的高油价和非常规油气概念的兴起,页岩气研究受到高度重视,当时主要是针对FortWorth盆地Barnett页岩的深入研究。2000年以来,页岩气勘探开发技术不断提高,并得到了广泛应用。同时加密的井网部署,使页岩气的采收率提高了20%,年生产量迅速攀升。2004年美国页岩气年产量为200×108m3,约占天然气总产量的4%;2007年美国页岩气生产井近42000口,页岩气年产量450×108m3,约占美国年天然气总产量的9%。参与页岩气开发的石油企业从2005年的23家发展到2007年的64家。美国相关专家预测,2010年美国页岩气产量将占天然气总产量的13%。图2是美国页岩气资源分布图。

美国的页岩气能够得到快速发展,技术上主要得益于以下四个方面:(1)减阻水压裂技术:携带非常少的添加剂,这样降低了成本,减少对地层的伤害,但携砂能力下降。(2)水平井替代了直井,长度从750m增加到了1600m。(3)10至20段,甚至更多的分段压裂大大提高了采收率。(4)同步压裂时地层应力变化的实时监测。当然,这也离不开国家政策的支持,20世纪70年代末,美国政府在《能源意外获利法》中规定给予非常规能源开发税收补贴政策,而得克萨斯州自20世纪90年代初以来,对页岩气的开发不收生产税。

除了美国,加拿大是继美国之后较早规模开发页岩气的国家,其页岩气勘探研究项目主要集中在加拿大西部沉积盆地,横穿萨克斯其万省的近四分之二、亚伯达的全部和大不列颠哥伦比亚省的东北角的巨大的条带。另外,Willislon盆地也是潜在的气源盆地,上白平系、侏罗系、二叠系和泥盆系的页岩被确定为潜在气源层位。可以预测,在不久的将来加拿大西部盆地很可能发现数量可观的潜在页岩气资源。

图2 美国的页岩气资源分布

2.2 中国页岩气开发现状

2009年以前,我国的页岩气开发以勘探为主,2009年12月,才正式启动页岩气钻井开发项目[3]。我国主要盆地和地区的页岩气资源量约为(15~30)×1012m3,中值23.5×1012m3,与美国的28.3×1012m3大致相当。预计到2020年,我国的页岩气年生产能力有望提高到150亿~300亿m3。页岩气在中国的分布在剖面上可分为古生界和中新生界两大重点层系。在平面上可划分为南方、西北、华北东北及青藏等4个页岩气大区。其中,南方及西北地区的页岩气(也包括鄂尔多斯盆地及其周缘)成藏条件最好。

我国南方地区是我国最大的海相沉积岩分布区[4],分布稳定,埋藏深度浅,有机质丰度高。四川盆地、鄂东渝西及下扬子地区是平面上分布的有利区。在中国北方地区,中新生代发育众多陆相湖盆,泥页岩地层广泛发育,页岩气更可能发生在主力产油气层位的底部或下部。鄂尔多斯盆地的中古生界、松辽盆地的中生界、渤海湾盆地埋藏较浅的古近系等也属于有利区。

3 页岩气开发特点分析

3.1 页岩气成藏机理

页岩气成藏机理兼具煤层吸附气和常规圈闭气藏特征,但又与这两者有显著的区别(表1),显示出复杂的多机理递变特点。页岩气成藏过程中,赋存方式和成藏类型的改变,使含气丰度和富集程度逐渐增加。完整的页岩气成藏与演化可分为3个主要过程,吸附聚集、膨胀造隙富集以及活塞式推进或置换式运移的机理序列。成藏条件和成藏机理变化,岩性特征变化和裂缝发育状况均可对页岩气藏中天然气的赋存特征和分布规律有控制作用。

表1 页岩气与其他天然气资源对比分析

3.2 页岩气开发特点

页岩气储层显示低孔、低渗透率的物性特征,气流的阻力比常规天然气大。因此,页岩气采收率比常规天然气低[5]。常规天然气采收率可以达到80%甚至90%以上,而页岩气仅为5%~40%。但页岩气开发虽然产能低,但具有开采寿命长和生产周期长的优点,页岩气井能够长期以稳定的速率产气,一般开采寿命为30~50年,美国地质调查局(USGS)2008年最新数据显示,Fort Worth盆地Barnett页岩气田开采寿命可以达到80年。

页岩气中气体主要分为吸附态和游离态,和煤层气相似,但页岩气中的吸附气的比例较低,有的只有30%左右[6],裂缝中的水很少,主要为游离态的压缩气,页岩气的生产可以分为两个过程,第一个过程是压力降到临界解吸压力以前,产出的只有游离态的气体,它的生成基本与低渗透天然气无异,这个过程也是页岩气地层压力降低的过程,第二个过程是压力降到临界解吸压力以后,这时基质中的气体开始解吸出来,与裂缝中的气体一起被采出,所以产气量会达到一个峰值,如图3所示,但是由于吸附气占的比例并不大,所以产气量又很快下降,最终的残余气饱和度中只有很小一部分是吸附气,因为和煤层气不同的是,采气降压不可能使储层的压力降得很低。

图3 不同类型天然气藏的生产曲线示意图

4 主要页岩气勘探开发技术

页岩气的勘探开发技术与普通的气井的不同之处主要体现在页岩气储层评价技术、水平井钻井技术、完井技术以及压裂技术这几个方面,其中水平井钻井以及压裂技术最为重要。

4.1 储层评价技术

页岩气储层评价的两种主要手段是测井和取心。应用测井数据,包括ECS(Elemental Capture Spectroscopy)来识别储层特征[7]。单独的GR不能很好地识别出粘土,干酪根的特征是具有高GR值和低Pe值。成像测井可以识别出裂缝和断层,并能对页岩进行分层。声波测井可以识别裂缝方向和最大主应力方向,进而为气井增产提供数据。岩心分析主要是用来确定孔隙度、储层渗透率、泥岩的组分、流体及储层的敏感性,并分析测试TOC和吸附等温曲线,以此得到页岩含气量。

4.2 水平井钻井技术

页岩气储层的渗透率低,气流阻力比传统的天然气大得多,并且大多存在于页岩的裂缝中,为了尽可能地利用天然裂缝的导流能力,使页岩气尽可能多的流入井筒,因此开采可使用水平钻井技术,并且水平井形式包括单支、多分支和羽状。一般来说,水平段越长,最终采收率就越高。

水平井的成本比较高,但其经济效益也比较高,页岩气可以从相同的储层但面积大于单直井的区域流出以美国Marcellus页岩气为例,水平井的驱替体积大约是直井驱替体积的5.79倍还多。在采用水平井增产技术过程中,水平井位与井眼方位一般选在有机质富集,热数度比较高、裂缝发育程度好的区域及方位。

4.3 完井技术

页岩气井的完井方式主要包括组合式桥塞完井、水力喷射射孔完井和机械式组合完井。组合式桥塞完井是在套管井中,用组合式桥塞分隔各段[8],分别进行射孔或压裂,这是页岩气水平井最常用的完井方法,但因需要在施工中射孔、坐封桥塞、钻桥塞,也是最耗时的一种方法。水力喷射射孔完井适用于直井或水平套管井。该工艺利用伯努利原理,从工具喷嘴喷射出的高速流体可射穿套管和岩石,达到射孔的目的。通过拖动管柱可进行多层作业,免去下封隔器或桥塞,缩短完井时间。

4.4 压裂技术

据统计,完井后只有5%的井具有工业气流,55%的井初始无阻流量没有工业价值,40%的井初期裸眼测试无天然气流,这是因为页岩气埋深大,渗透率过低。所以压裂对于页岩气来说是最为重要的。而且因为页岩气多采用水平井开采,因此页岩气压裂技术,主要包括水平井分段压裂技术、重复压裂技术、同步压裂技术以及裂缝综合检测技术(图4)。

4.4.1 水平井分段压裂技术

在水平井段采用分段压裂,能有效产生裂缝网络,尽可能提高最终采收率,同时节约成本。最初水平井的压裂阶段一般采用单段或2段,目前已增至7段甚至更多。如美国新田公司位于阿科马盆地Woodford页岩气聚集带的Tipton-H223[9]井经过7段水力压裂措施改造后,增产效果显著,页岩气产量高达14.16×104m3/d。水平井水力多段压裂技术的广泛运用,使原本低产或无气流的页岩气井获得工业价值成为可能,极大地延伸了页岩气在横向与纵向的开采范围,是目前美国页岩气快速发展最关键的技术。

图4 Barnett页岩压裂模式示意图

4.4.2 重复压裂

当页岩气井初始压裂因时间关系失效或质量下降,导致气体产量大幅下降时,重复压裂能重建储层到井眼的线性流,恢复或增加生产产能,可使估计最终采收率提高8%~10%,可采储量增加30%,是一种低成本增产方法,压裂后产量接近能够甚至超过初次压裂时期,这是因为重复压裂可以发生再取向(图5),在原有裂缝的基础上,还会压开一些新的裂缝。美国天然气研究所(GRI)研究证实[10],重复压裂能够以0.1美元/mcf(1mcf=28317m3)的成本增加储量,远低于收购天然气储量0.54美元/mcf或发现和开发天然气储量0.75美元/mcf的平均成本。

图5 重复压裂再取向

4.4.3 同步压裂

同步压裂技术最早在Barnet页岩气井实施,作业者在相隔152~305m范围内钻两口平行的水平井同时进行压裂。由于页岩储层渗透性差,气体分子能够移动的距离短,需要通过压裂获得近距离的高渗透率路径而进入井眼中。同步压裂采用的是使压力液及支撑剂在高压下从一口井向另一口井运移距离最短的方法,来增加水力压裂裂缝网络的密度及表面积。目前已发展成三口井,甚至四口井同时压裂,采用该技术的页岩气井短期内增产非常明显。

4.4.4 裂缝综合监测技术

页岩气井压裂后,地下裂缝极其复杂,需要有效的方法来确定压裂作业效果,获取压裂诱导裂缝导流能力、几何形态、复杂性及其方位等诸多信息,改善页岩气藏压裂增产作业效果以及气井产能,并提高天然气采收率。

利用地面、井下测斜仪与微地震监测技术结合的裂缝综合诊断技术,可直接地测量因裂缝间距超过裂缝长度而造成的变形来表征所产生裂缝网络,评价压裂作业效果,实现页岩气藏管理的最佳化[11]。该技术有以下优点:①测量快速,方便现场应用;②实时确定微地震事件的位置;③确定裂缝的高度、长度、倾角及方位;④具有噪音过滤能力。

作为目前美国最活跃的页岩气远景区,沃斯堡盆地Barnett页岩的开发充分说明了直接及时的微地震描述技术的重要性。2005年,美国Chesapeake[12]能源公司于将微地震技术运用于一口垂直监测井上,准确地确定了NewarkEast气田一口水平井进行的4段清水压裂的裂缝高度、长度、方位角及其复杂性,改善了对压裂效果的评价。

5 中国页岩气开发亟需解决的问题

5.1 地质控制条件评价

我国页岩气勘探才刚刚起步,尽管页岩气成藏机理条件可与美国页岩气地质条件进行比对,但我国页岩气的主要储层与美国有很大区别,如四川盆地的页岩气层埋深比美国大,美国的页岩气层深度在800~2600m,四川盆地的页岩气层埋深在2000~3500m。因此需要建立适合于我国地质条件且对我国页岩气资源战略调查和勘探开发具有指导意义的中国页岩气地质理论体系。应重点研究我国页岩发育的构造背景、成藏条件与机理(成藏主要受控于页泥岩厚度、面积、总有机碳含量、有机质成熟度、矿物岩石成分、压力和温度等因素)、页岩成烃能力(如有机质类型及含量、成熟度等)、页岩聚烃能力(如吸附能力及影响因素等)、含气页岩区域沉积环境、储层特征、页岩气富集类型与模式,系统研究我国页岩气资源分布规律、资源潜力和评价方法参数体系等。

5.2 战略选区

作为可商业规模化开采的页岩气,战略选区是页岩气勘探开发前的基础性、前瞻性工作,除了地质控制因素的考虑,还应特别重视页岩气开发可行性。我国页岩气起步阶段应首先要考虑海相厚层页岩中那些总有机碳含量大于1.0%、Ro介于1.0%~2.5%之间、埋深介于200~3000m之间、厚度大于30m的富含有机质页岩发育区;其次考虑海陆交互相富含有机质泥页岩与致密砂岩和煤层在层位上的紧密共生区;但同时要研发不同类型天然气资源多层合采技术;对于湖相富含有机质泥页岩,重点考虑硅质成分高、岩石强度大、有利于井眼稳定的层系。

5.3 技术适应性试验

美国页岩气成功开发的关键原因之一在于水平井技术、多段压裂技术、水力压裂技术、微地震技术、地震储层预测技术、有效的完井技术等一系列技术的成功应用。但这些手段在中国是否会取得比较好的效果,还值得进一步的现场试验才能得出结果。中国页岩气的开发急需要研究出一套适合中国地质条件以及页岩气特点的开发技术,使分布广泛的页岩气资源量逐步转化为经济和技术可采储量。

5.4 环保因素的考虑

对Barnett页岩开采地区的研究表明,钻井和压裂需要大量的水资源,2000年在Bar-nett页岩中开采页岩气需86.3×104m3的地表水和地下水,2007年这一用量增长了10倍多,约60%~80%的水会返回地面,其中含有大量的化学物质或放射性元素,会造成水污染,因此页岩气开发过程中对于环境的保护也是需要重视的问题。

6 结论

(1)美国页岩气的高速发展表明,除了天然气价格上涨、天然气需求增加以及国家政策扶持等因素外,主要得益于以下开发技术的进步与推广运用:水平井钻井与分段压裂技术的综合运用,使页岩开发领域在纵向和横向上延伸,单井产量上了新台阶;重复压裂与同步压裂通过调整压裂方位,能够改善储层渗流能力,延长页岩气井高产时期;裂缝监测技术能够观测实际裂缝几何形状,有助于掌握页岩气藏的衰竭动态变化情况,实现气藏管理的最佳化。

(2)目前中国的页岩气开发急需要解决以下几个方面的问题:地质控制条件评价、战略选区、技术适应性试验、环保因素的考虑,从而推动中国页岩气产业的快速发展。

参考文献

[1]张金川,薛会,张德明等.2003.页岩气及其成藏机理.现代地质,17(4):466

[2] Carlson E S. Characterization of Devonian Shale Gas Reservoirs Using Coordinated Single Well Analytical Models: pro- ceedings of the SPE Eastern Regional Meeting,Charleston,West Virginia,[C] . 1994 Copyright 1994,Society of Petroleum En- gineers,Inc. ,1994

[3] 陈波,兰正凯 . 2009. 上扬子地区下寒武统页岩气资源潜力,中国石油勘探,3: 1 ~ 15

[4] 张金川,金之钧,袁明生 . 2004. 页岩气成藏机理和分布 . 天然气工业,24 ( 7) : 15 ~ 18

[5] Shaw J C,Reynolds M M,Burke L H. 2006. Shale Gas Production Potential and Technical Challenges in Western Cana- da: proceedings of the Canadian International Petroleum Conference,Calgary,Alberta,[C]

[6] Javadpour F,Fisher D,Unsworth M. 2007. Nanoscale Gas Flow in Shale Gas Sediments [J],46 ( 10)

[7] Bustin A M M,Bustin R M,Cui X. 2008. Importance of Fabric on the Production of Gas Shales: proceedings of the SPE Unconventional Reservoirs Conference,Keystone,Colorado,USA,[C] . Society of Petroleum Engineers

[8] Cipolla C L,Warpinski N R,Mayerhofer M J et al. 2008. The Relationship Between Fracture Complexity,Reservoir Properties,and Fracture Treatment Design: proceedings of the SPE Annual Technical Conference and Exhibition,Denver,Colo- rado,USA,[C] . Society of Petroleum Engineers

[9] 钱伯章,朱建芳 . 2010. 页岩气开发的现状与前景 . 天然气技术,4 ( 2) : 11 ~ 13

[10] Lewis A M,Hughes RG. 2008. Production Data Analysis of Shale Gas Reservoirs: proceedings of the SPE Annual Technical Conference and Exhibition,Denver,Colorado,USA,[C] . Society of Petroleum Engineers

[11] Mayerhofer M J,Lolon E,Warpinski N R et al. 2008. What is Stimulated Rock Volume: proceedings of the SPE Shale Gas Production Conference,Fort Worth,Texas,USA,[C] . Society of Petroleum Engineers

[12] Arthur J D,Bohm B K,Cornue D. 2009. Environmental Considerations of Modern Shale Gas Development: proceed- ings of the SPE Annual Technical Conference and Exhibition,New Orleans,Louisiana,[C] . Society of Petroleum Engineers

温馨提示:答案为网友推荐,仅供参考
相似回答