这里,要把积分区域还原成
D = {(x, y); 1-x≤y≤√(1-x²), 0≤x≤1} (作图)
= {(x, y); 1/(cosθ+sinθ)≤r≤1, 0≤θ≤π/2},
这样
g.e. = ∫∫D[(x+y)/(x²+y²)]dxdy
= ∫∫D[r(cosθ+sinθ)/r²]rdrdθ
= ∫[0,π/2]dθ∫[1/(cosθ+sinθ),1](cosθ+sinθ)dr
= ∫[0,π/2]{(cosθ+sinθ)*[1-1/(cosθ+sinθ)]}dθ
= ∫[0,π/2][(cosθ+sinθ)-1]dθ
= ……
注:1/(cosθ+sinθ)≤r 这样得到:
1-x≤y <==> 1≤y+x <==> 1≤r(cosθ+sinθ) <==> 1/(cosθ+sinθ)≤r
温馨提示:答案为网友推荐,仅供参考