区别:
1 向量组的等价是两个向量组能够互相线性表示,也就是两个向量组的维数相同,但向量个数并不一定相同,他们拼成的矩阵的列数也并不一定相同。
2 矩阵的等价是可用初等变换把一个矩阵化为另一个矩阵,这要求两个矩阵的行数与列数都相同。
3 两个矩阵等价,并不能说明它们的列向量组等价。例如矩阵A的第一列是(1,0)^T,第二列是(0,0)^T,矩阵B的第一列是(0,1)^T,第二列是(0,0)^T,则矩阵A与B等价,但A的列向量组与B的列向量组不等价。
扩展资料:
在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=Q-1AP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。
性质:
1 矩阵A和A等价(反身性);
2 矩阵A和B等价,那么B和A也等价(等价性);
3 矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);
4 矩阵A和B等价,那么IAI=KIBI。(K为非零常数)
5 具有行等价关系的矩阵所对应的线性方程组有相同的解
6 对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:
(1)矩阵可以通过基本行和列操作的而彼此变换。
(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。
向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是
R(A)=R(B)=R(A,B),
其中A和B是向量组A和B所构成的矩阵。
(注意区分粗体字与普通字母所表示的不同意义)
或者说:两个向量组可以互相线性表示,则称这两个向量组等价。
注:
1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。
2、任一向量组和它的极大无关组等价。
3、向量组的任意两个极大无关组等价。
4、两个等价的线性无关的向量组所含向量的个数相同。
5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。
6、如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。
参考资料:百度百科-等价向量组 百度百科-等价矩阵
向量组等价,是两向量组中的各向量,都可以用另一个向量组中的向量线性表示。
矩阵等价,是存在可逆变换(行变换或列变换,对应于1个可逆矩阵),使得一个矩阵之间可以相互转化。
如果是行变换,相当于两矩阵的列向量组是等价的。
如果是列变换,相当于两矩阵的行向量组是等价的。
由于矩阵的行秩,与列秩相等,就是矩阵的秩,在行列数都相等的情况下,两矩阵等价实际上就是秩相等,反过来,在这种行列数都相等情况下,秩相等,就说明两矩阵等价。
这与向量组等价略有区别:
向量组等价,则两向量组的秩(极大线性无关组中向量个数)相等,但反过来不一定成立,即两向量组的秩相等,不一定能满足两向量组可以相互线性表示。
向量组等价的基本判定是:两个向量组可以互相线性表示。需要重点强调的是:等价的向量组秩相等,但是秩相等的向量组不一定等价。向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。
等价矩阵
在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=Q-1AP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。
线性代数基础课系列——矩阵与向量