山西的地热资源

如题所述

黄卫星1裴捍华1崔海英2

(1.山西省地勘局地质处;2.山西省国土资源厅地质环境处)

山西省地热资源丰富,目前地热水主要用作浴疗和农灌,个别用作热带种鱼养殖、温室栽培。随着可再生能源法的颁布,地下热水的利用将被提到议事日程,地热能将在采暖、纺织洗染、烘干、种植和养殖等各行各业得到广泛应用,因此探讨全省地热资源对开发利用地热能具有一定意义。山西地热资源评价前人曾做过一些工作,据王连成等估算,山西地热储聚的热能达68806.6×1011kJ,折合标准煤2.34835×108t。据王龙等统计,截至1992年山西地下热水点的总流量47×103m3/d,总热流量33.9×106W,相当于燃烧1000 t/d的标准煤所放出的热量。作者根据山西热矿水出露分散,热田面积小的特点,地热资源评价中采用单个热田评价,资源叠加的办法,算得全省地热资源总量:1.411969×1016kcal,折合标准煤:1.41065×109t。

1 山西地热资源分布特征

山西已查明的地热田28个,热水水温25~81℃。主要分布在汾渭地堑及忻州断陷盆地,在部分边山断裂带及山前倾斜平原部位也有分布。从全省已经勘查过的地热田分布规律分析,热储层主要有碳酸盐岩热储和第四系孔隙热储,地下热水分布与活动性断裂关系密切。据邢集善等人对晋南盆地居里面和莫霍面深部地球物理勘探成果的研究,居里等温面和莫霍面在汾渭地堑都具有上拱现象,汾渭地堑地壳厚度38~39km,地堑外围(山区)地壳厚40~41km,因此,深部热传导是山西地热的主要热源。控制各断陷盆地周边形状的深大断裂落差可达4~5km,使大气降水循环能达到4~5km深度,加之新构造运动使断陷盆地基底更加破碎,为地下热水上涌提供了通道,断陷盆地中巨厚的沉积物形成导热屏障,使热量不易散发而形成地热田。

山西热矿水分布的盆地按基底岩性结构分两种类型:一类是基底岩性为碎屑岩加碳酸盐岩结构的太原、临汾、侯马、运城盆地,在边山大断裂及凹陷盆地中基底隆起部位均是热矿水富集的有利部位,且热田规模较大。如①九原山—塔儿山隆起上的汾阳岭,出露德西毛、安咸平等地热田,地垒是地热显示的有利部位。位于河津—曲沃浅凹陷(基底埋深小于600m)的西马、北池—清河一带西海、高显等地的地热田都处在构造隆起部位,太原断陷盆地的热水主要受亲贤地垒控制。而在一些深凹陷区,如运城凹陷,钻井深度达2115~3000m,打成水温70~72℃、单井出水量100~160m3/h的地热井。②沿断陷隆起和凹陷带之间交界的深大断裂带,地下热水点呈线状分布,如临汾—侯马盆地地下热水点主要沿两个方向呈带状展布,一是沿NE—SW向展布,如襄汾德西毛—侯马北庄,主要受洪洞—临汾凹陷和塔儿山—九原山陷隆所控制。二是沿NEE—SWW 向展布,东自翼城南梁、曲沃海头、侯马驿桥、新绛北池、古堆泉至稷山的清河、万荣等地,主要受河津—曲沃凹陷和塔儿山—九原山陷隆、稷王山陷隆所控制。晋中新裂陷中的祁县热水区,主要受西谷—南庄凹陷和侯城、平遥陷隆的控制。③地下热水沿山前活动断裂带呈线状分布。如太原神堂沟、清徐平泉,夏县的南山底等热水点都在断裂带上。这是由于山前深大断裂新生代以来一直在活动,长期活动断裂为地下水畅通及深循环提供良好的条件。

另一类是基底为古老变质岩结构的大同、忻州盆地,热矿水只分布在基底凹中隆的断裂深切部位,高温中心在断裂带上,且热田规模较小。如忻州、原平、定襄地下热水,主要受代县、原平、忻定凹陷所控制。

2 山西热矿水的水化学特征

2.1 水化学类型及其分布规律

热矿水中阳离子以Na、Ca2+为主,阴离子以

、Cl为主,水化学类型以Cl·SO4-Na型、SO4Ca ·Na型、Cl ·SO4·HCO3Na ·Ca型为主,HCO3·SO4Na型、HCO3·Cl Na型也有少量分布,分布规律是:①受基岩断裂控制的热矿水直接以泉的形式在基岩中出露,在沉积盆地中受断裂控制的热矿水未同浅层冷水混合情况下,热矿水为SO4·Cl Na型水,如忻定盆地的大营、奇村、汤头及盂县寺坪安均属此类。②热矿水与浅层冷水混合且地下冷水混入比例较大时,热矿水即变为HCO3·Cl-Na型水,如天镇马圈庠、阳高孤山庙热矿水均属此类。侯马、临汾、运城盆地热矿水点分布较多,水化学类型复杂,总的规律是岩溶热矿水中Ca2+

的含量增加,由于晋南盆地水交替强烈,成井混层采水,热矿水的水化学特征大部分受浅层冷水影响,夏县南山底为典型的ClNa型,西马、高显、德西毛为SO4-Ca ·Na型和Cl ·SO4Ca ·Na型,其他热矿水为HCO3·SO4Na型、HCO3Na型和HCO3·Cl Na型等。

从以上描述可以看出,从基岩中直接吸取的热矿水一般为Cl·SO4-Na型、与浅层冷水混合后水质类型发生变化,HCO3、Ca成分增加,水化学类型变得复杂。

2.2 热矿水中微量元素组分

热矿水中含有许多微量元素组分,如锶、锂、硅、溴、碘、硼、铁、锰、硒、氟等,其含量明显高于周围地下水,较珍贵的锂在热矿水中含量在0.01~1.10mg/L,只在西马、南山底、马圈庠热矿水中锂含量较高,分别为:0.94、1.08、1.10mg/L。锶的含量普遍高,其值介于0.26~4.92mg/L间,锶含量大于1mg/L的热矿泉12处,大于2mg/L热矿泉6处,锶含量最高的为新绛西马热矿泉。热矿水中二氧化硅含量介于15.16~83.20mg/L间,二氧化硅的含量与水温成正比,含量大于40mg/L的有8 处,含量最高为夏县南山底。氟在热矿水中含量较高,其值介于0.6~12.0mg/L间,最高含量为忻州奇村热矿水,闻喜北关热矿水含量最低,氟含量大于5mg/L的热矿泉有7处。

2.3 热矿水中气体成分

本文使用山西仅有的四组样品资料(其中2组自采,2组引用前人)。热矿水中气体含量主要的N2、O2、CO2等,其次还有少量Ar、He、H2等,N2占气体总量69.84%~88.90%,热矿水中N2/O2为4.12~12.43,Ar/N2为0.0061~0.03,与空气中N2/O2比、Ar/N2比对照,说明热矿水是由大气降水形成的,大营热矿水中Ar/N2比为0.61%,有生物成因的氮混入。热矿水中CO2气体含量较低,在1.6%~2.37%,Ar含量较富,为0.48%~3.33%,由此可命名为氩热矿水。

2.4 热矿水同位素特征

本文采集同位素8 组(分析氚、δD、δ18O),引用前人资料2 组,δD在-7.05‰~86.6‰之间,δ18O在-10.20‰~12.05‰之间。把δD、δ18O值点在相关图上,均落在国际雨水线附近。氚值含量:大部分地热水接近本底值,只有浑源汤头、新绛北池在8~20 TU之间。

3 山西地热资源评价

3.1 地热资源评价原则

本次评价以原省地矿局开展过的普查、详查、物探资料为主,收集其他部门资料作为补充,评价的地热储量,达到A+B 级资源的地热田有原平大营、忻州奇村、盂县寺坪安、夏县南山底。大部分地热田为C+D级储量。评价中揭露热矿水按25℃划出热田边界。松散层孔隙热储根据钻探、物探等手段取得的参数可下推至基岩面,推测的热储层厚度按钻探揭露热储层厚度比例计算。孔隙热储底部的变质岩热储只取风化壳30m厚。岩溶裂隙热储按钻探资料揭露地层厚度,选取岩溶裂隙发育厚度计算。太原市亲贤地垒地热田根据3个勘孔结合物探查明的基底构造,估算地热田面积70km2,侯马盆地依据2个勘探孔结合物探资料估算地热田面积100km2。运城盆地依据2个勘探孔及基底构造特征估算地热田面积392km2。有单泉(井)出露的地区,无其他资料,热田面积按1km2计算。考虑到浑源汤头、盂县寺坪安、清徐平泉、祁县王村地热田条件比较特殊,采用孔口(泉口)放热量的方法进行地热资源估算。

3.2 地热资源计算

3.2.1 选用热储法计算

浅层地热能:全国地热(浅层地热能)开发利用现场经验交流会论文集

式中:QR为地热资源量(kcal);A为热储面积(m2);d为热储厚度(m);tr为热储温度(℃);tj为基准温度(即当地地下恒温层温度或年平均气温)(℃);.c为热储岩石和水的平均热容量(kcal/m3·℃)。

浅层地热能:全国地热(浅层地热能)开发利用现场经验交流会论文集

式中:ρc、ρw分别为岩石和水的密度(kg/m3);Cc、Cw分别为岩石和水的比热容(kcal/kg·℃)

用热储法计算的资源量不可能全部被开采出来,只能开采出一部分,二者的比值称为回收率。

用体积法计算时,对新生代砂岩,当孔隙度大于20%时,热储回收率定为0.25;孔隙率等于和小于20%时,回收率选取0.15。本次评价的孔隙热储只有大营地热田利用实测资料,回收率选取为0.25;其他地热田无实测资料,均选取了0.15。碳酸盐岩裂隙热储回收率定为0.30,中生代砂岩和花岗岩等火成岩类热储回收率则根据裂隙发育情况定为0.08。按1720 kcal=1kg标准煤折算。

3.2.2 选用放热量法计算

QH=Q开·Cw(tw-tj

式中:QH为热矿水放热量(kcal/s);Q为热矿水开采量(L/s);Cw为热水的比热(kcal/m3·℃);tw为热矿水水温(℃);tj为恒温层温度(℃)。

3.2.3 评价方法及参数选取

天镇马圈庠、阳高孤山庙、原平大营、定襄汤头、忻州奇村、顿村地热田评价中,基本应用了原报告中取得的系列参数,作者认为原报告中参数比较合理,钻探、物探、化探、抽水试验等方法均应用,大营还实测了热物性参数。

浑源汤头、盂县寺坪安、清徐平泉、祁县王村地热田采用放热量法进行评价,因为浑源汤头、盂县寺坪安热田面积小,热水直接从变质岩裂隙中涌出,利用热储法计算资源量偏小。清徐平泉流量大、温度低,用热储法计算资源量偏大,祁县王村只有极少数井抽取地热水,且温度较低,用热储法计算资源量也偏大。

山西南部地热田分布最多,但目前开采层大多为100~200m的孔隙热储层,收集到现有资料,岩溶开采井较少,深度不超过800m,多分布在汾阳岭、海头、高显、仁和和九原山地热田,热田面积选取了《山西南部地热资源普查报告》中用物探结合热水点出露圈定的面积,热储厚度用已有岩溶热水井揭露的热储厚度按岩溶地层富水岩组估算厚度。热储温度有测井曲线的按实测热储层温度选取,没测井温度曲线的用井口水温按当地地温梯度推算。太原、侯马、运城盆地地热田按勘探孔揭露的热储层厚度计算,热田面积根据物探资料查明的基底构造估算。

3.2.4 计算结果

资源计算中有实测参数的地热田用实测参数,无实测参数的地热田选经验值。计算结果得知,山西已查明的地热资源总量:1.411969×1016kcal,可回收地热资源:2.426314×1015kcal,可回收地热资源折合标准煤:1.41065×109t。各地热田资源量见表1。

表1 山西省地热资源统计表

续表

参考文献

[1]山西省太原神堂沟地热田勘察报告,山西地矿局第一水文队

[2]山西省南部地热资源普查报告,山西省地矿局第二水文队

[3]山西省地下热水志,山西省地质矿产局环境地质总站

温馨提示:答案为网友推荐,仅供参考
相似回答