i的3次方是-i。运算过程如下:i^1 = i,i^2 = - 1,i^3 = - i,i^4 = 1。
i^n具有周期性,且最小正周期是4, i^4n=1,i^4n+1=i,i^4n+2=-1,i^4n+3=-i。由于虚数特殊的运算规则,出现了符号i。在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,他规定i²=-1。
虚数单位来源
虚数单位“i”首先为瑞士数学家欧拉所创用,到德国数学家高斯提倡才普遍使用。高斯第一个引进术语“复数”并记作a+bi。“虚数”一词首先由笛卡儿提出。早在1800年就有人用(a,b)点来表示a+bi,他们可能是柯蒂斯、棣莫佛、欧拉以及范德蒙。
把a+bi用向量表示的最早的是挪威人卡斯巴·魏塞尔,并且由他第一个给出复数的向量运算法则。“i”这个符号来源于法文imkginaire——“虚”的第一个字母,不是来源于英文imaginarynumber(或imaginaryquautity)。复数集C来源于英文complexnumber(复数)一词的第一个字母。