基本特点和分布规律

如题所述

20世纪70年代在南澳大利亚Stuart Shelf地区探明了奥林匹克坝超大型铜-铁-金-铀(20亿t矿石,铁35%,铜1.6%,U3O80.06%,金0.6×10-6和银3.5×10-6)(Robert et al.,1983;Scott,1987)。这一重要发现促使人们关注富铁氧化物矿床,但其独有的特征又很难将其归为某一种已知矿床类型。随着不断研究,根据其显著特征,例如,富氧化铁、大量角砾岩筒控矿、形成于元古宙,许多地质学家(Bell,1982;Youles,1984;Hauck et al.,1989;Hauck,1990)将奥林匹克坝与美国密苏里西南部的铁矿省、加拿大育空地区的Wernecke、南澳大利亚Mount Painter地区、中国白云鄂博、瑞典基鲁纳进行对比研究。直到90年代初,Hitzman等(1992)从新的视角把许多看起来关系不大的矿床联系在一起,统称为元古宙铁氧化物(Cu-U-Au-REE)矿床,并认为基鲁纳型铁矿应该是这一大类矿床的一个亚类。他们还指出这类矿床原始形成时为浅成,尽管可能与深成的岩浆活动有关。由于这一概念把奥林匹克坝、基鲁纳和白云鄂博等具有巨大经济价值的矿床有机地联系在一起,引起了国际上的巨大反响和高度关注,无论是学术界还是矿业界都表示出极大的兴趣。从对其科学意义探索的热烈程度和工业界对其作为勘查评价的重要目标追逐,可以认为是过去40~50年间继斑岩铜矿、块状硫化物(包括VMS型和SEDEX型)、浅成低温热液型金矿之后,矿床学研究和勘查的又一个新高潮。尽管Hitzman等(1992)当初仅仅将这些矿床限定为元古宙,现在发现这种矿床从太古宙到中新生代都有分布,除了上述的主元素外,在一些矿床不同程度含有钴、银、铋、钼、氟、碲、硒,甚至锡、钨、铅锌和钡等(Niiranen,2005)。目前,对于这类矿床统一使用的名词为铁氧化物-铜-金矿床(Iron Oxide-Copper-GoldDeposits),简称为IOCG型矿床。对于像基鲁纳等仅仅只有铁或铁铜一种或两种成矿元素的矿床,被认为是这类矿床的一个端元组成。

在我国,这类矿床研究刚刚起步,张兴春等(2003)和王绍伟(2004)曾对这类矿床的国际研究现状进行过初步的介绍。在过去几年中,我们在执行中国地质调查局的《我国主要金属矿床模型研究》项目时,积极倡导开展这类矿床研究和勘查,并提出长江中下游地区的宁芜-庐枞地区的玢岩铁矿和海南石碌铁矿属于此类。许德如等(2007)初步论述石碌铁钴铜(金)矿床可能为IOCG型矿床。

本章系统介绍和全面评述IOCG型矿床的研究现状,以期进一步促进在这方面研究和勘查工作。

一、铁氧化物-铜-金(IOCG)矿床定义

正如Sillitoe(2003)所述,两个中新世铁氧化物-铜-金(IOCG)矿床最早定义为含有大量磁铁矿和/或赤铁矿并伴随有黄铜矿±斑铜矿,与一定构造-岩浆环境有关而且变化范围大的矿产组合。IOCG矿床与深成侵入岩和广义的同期活动的断裂有密切的关系。根据矿床形态、岩性和构造特点,IOCG矿床可以分为几种类型:脉状、热液角砾岩、钙质矽卡岩、沿层交代层状(mantos)和前几项或部分的复合型。脉状矿床往往产在侵入岩体内,尤其是等粒辉长质闪长岩和闪长岩,而大型矿床则出现在距侵入岩体接触带2km的火山-沉积序列中。IOCG矿床通常与成矿前沿断裂侵入的镁铁质岩墙(多为闪长质成分)有关。IOCG矿床形成伴随有钠质、钙质和钾质或复合性的蚀变作用,通常见到向上或向外蚀变分带为:从磁铁矿-阳起石-磷灰石到镜铁矿-绿泥石-绢云母,拥有矿化元素Cu-Au-Co-Ni-As-Mo-U-LREE,还可以见到一些围绕闪长岩接触带的钙质铁矽卡岩。

二、IOCG矿床全球时空分布特点

从目前的研究和报道来看,IOCG型矿床在全球的分布,时间上从太古宙至新生代,空间上遍及北美洲、南美洲、亚洲、欧洲、澳洲和非洲(图4-1)的某些比较小的地区,每个地区都包含几个或几十个矿床。总体来讲,这些地区富氧化铁,而铜、金、钴和稀土一般都是副产品。在地球上最早出现的IOCG矿床是巴西的Carajas地区,形成时代为新太古代,时间范围为2.75~2.35Ga(Tazava et al.,2000;Dreher et al.,2008)。已知很多IOCG矿床出现在元古宙,包括南澳大利亚的奥林匹克坝、澳大利亚新南威尔士Cloncurry地区、澳大利亚北部红岸(Redbank)地区、我国的白云鄂博、加拿大育空地区的Wernecke、加拿大大湖岩浆带Wernecke和Richardson地区、美国密苏里西南旧金山(St.Francois Mountains)地区、瑞典基鲁纳地区(Hitzman,1992),以及芬兰的Kolari和Misi地区(Niiranen,2005),这些矿床的形成时代为1900~1600Ma。迄今仅见在伊朗中部报道BafqIOCG矿集区,其成矿时代为515~529Ma(Torab et al.,2007),尽管Herrington等(2002)描述俄罗斯乌拉尔南部古生代Magnitogorsk超大型矽卡岩铁矿可能是这类矿床,但尚需要进一步工作。我国东天山地区晚古生代的沙泉子和雅满苏含铜铁矿床可能属于此类,仍需要进一步开展研究。在南美大陆西部边缘智利和秘鲁发育一条与著名的新生代斑岩铜矿带相平行的IOCG铁氧化物-铜-金带,前者在靠大陆内的东侧,而后者沿大陆边缘分布,成矿时代为165~112Ma(Sillitoe,2003)。我国宁芜-庐枞地区的几十个矿床是比较典型的基鲁纳式矿床,按照新的定义也可以归为IOCG矿床组合,陈毓川和李文达(1978)建立的玢岩铁矿模型在今天来看仍然具有重要的示范作用。

图4-1 全球主要IOCG矿床及成矿省的分布图

最近几年,精确测年表明宁芜-庐枞地区的成岩成矿作用峰期为129~125Ma(余金杰等,2002;Mao et al.,2006)。Dow和Hitzman(2000)也报道在阿根廷西北地区Salta省的Arizario和Lindero为两个中新生世氧化铁-铜-金矿。Williams等(2005)提出墨西哥Duragodiqu的CerrodeMercado、美国犹他州的铁泉和智利的ElLaco都可能是新生代的氧化铁-铜-金矿。

三、主要成矿环境

对于IOCG矿床的成矿环境,Hitzman(1992)最早概括为克拉通或大陆边缘,多数情况下与伸展构造具有密切的时空关系(图4-2)。事实上,大多数矿化地区沿大陆边缘主要构造带呈平行大陆边缘拉长状展布。而且这种伸展构造体,为高分异的岩浆形成的大量岩浆流体向外流动提供了空间。伸展构造带内的断裂往往成为流体向地壳浅部流动的通道。正断层则有助于大量的大气水的深循环和加热。相对低温的流体可能指示这些矿床的形成与深循环的大气水或变质流体有关,它们或许是直接来自岩浆流体混合的产物。

图4-2 铁氧化物(Cu-U-REE-Au)矿床的构造环境和赋矿岩石序列

随着研究程度的不断深入和越来越多IOCG矿床被鉴别出来,成矿构造呈现出多样化,目前共总结出3种,即:①与非造山岩浆有关的大陆地块内部(例如,奥林匹克坝);②与中基性岩浆有关的较年轻大陆边缘弧(例如,南美安第斯);③褶皱和推覆带(例如,Tennant Creek-Mount Isa线形褶皱带内)。Williams等(2005)提出这类矿床缺乏明确的构造环境控制。Groves和Bierlein(2007)反对Williams等(2005)这种提法,他们认为“如果仅考虑前寒武纪大型—超大型矿床,就变得非常清楚。这些矿床(包括巴西的Carajas,澳大利亚的奥林匹克坝,南非的Palabora)都位于太古宙大陆边缘100km以内或靠近太古宙与元古宙岩石圈接触带附近。所有这些大型—超大型矿床在时空上都与克拉通内非造山型花岗岩或A型花岗岩有关。这一组合也清楚地指示出它们与板块俯冲或由地幔柱引致的次大陆岩石圈地幔(subcontinenta llithospheric mantle,简称SCLM)部分重熔等其他构造过程有关,因此说构造环境很重要”。位于瑞典和芬兰北部的超大型基鲁纳铁矿及其周围的一系列矿床也有同样的岩石圈环境,在古元古代为一个大陆边缘,Weihed等(2005)提出其地球动力学模型,并强调地幔柱活动与IOCG及铜镍硫化物矿床、层状铅锌矿、岩体有关的铜金矿和浅成低温热液矿床的关系(图4-3)。与此类同,时代比较新的IOCG矿床,例如,在安第斯智利北部-秘鲁南部的世界级大型矿集区,在时空上与次碱性花岗岩和碱性花岗岩有关,但其构造环境由与板块俯冲有关的长期活动的受压扭平行断裂带和反转盆地所控制。我国长江中下游地区的宁芜-庐枞白垩纪盆地中128~125Ma的IOCG铁矿(玢岩铁矿)也是位于中国东部大陆边缘,与同时代中基性-碱性火山岩-侵入杂岩有关,是白垩纪岩石圈拆沉过程在地壳的响应。如果白云鄂博属于IOCG矿床,它也是位于华北克拉通北部边缘,形成于大陆被动边缘元古宙裂谷内,与之有关不仅有碱性岩,还有碳酸岩。在伊朗中部Tabas与Yazdi前寒武纪地块之间的线形超褶皱带中,Bafq铁矿集中区位于寒武纪Kashmar-Kerman构造带,也明显属于大陆边缘活动带(Torab et al.,2007)。

图4-3 北欧IOCG矿床成矿的地球动力学特征

四、与成矿有关的岩浆岩

IOCG矿床的成因依然是一个争论的焦点,主要两种观点包括岩浆流体成矿(Hitzman,1992;Pollard et al.,2000)与受岩体加热的盆地流体成矿(Barton et al.,1996;Hitzman,2000)。尽管如此,两方都认为岩体的存在与成矿有着密切的关系,只是岩体贡献的程度和方式,是能源加物质源还是仅仅是能源。

Pollard(2006)总结了从太古宙到中生代全球几个典型大型IOCG矿带或矿集区,包括澳大利亚东Gawler克拉通中的奥林匹克坝和凸山(Prominent Hill),澳大利亚北部Cloncurry地区的Ernest Henry,巴西Carajás地区的Salobo、Critalino、Sossego、Alemāo,智利Candelaria和Manto Verde,发现这些矿床在时空上与岩浆岩关系密切。而这些与IOCG矿床有关的花岗质岩石大都显示出高钾的性质,仅巴西Salobo花岗岩为偏铝到弱铝组分,该岩石由长石、石英、辉石和角闪石组成,缺少碱性矿物(Lindenmayer et al.,1994)。单从岩性上来看,与IOCG矿床有关的岩石主要为闪长岩、辉石闪长岩和花岗闪长岩,也有花岗岩。尽管花岗质岩石在成分上有一些差别,但是都属于磁铁矿系列花岗岩类或Ⅰ型花岗岩,与斑岩铜金矿有关的花岗质岩石相类同,具有相似的氧化-还原电位和分异程度。利用花岗质岩石的成分在Rb对Y+Nb的变异图解(Pearceetal.,1984)投影,可以看出来这些岩石的形成环境为大陆边缘或板内而不是造山带或同碰撞环境,这与前面叙述的成矿环境是一致的。这些岩石学特点与我国宁芜-庐枞盆地的IOCG铁矿有关的岩石组合相当一致,后者的主要岩石系列包括辉长岩、辉石闪长岩、石英闪长岩、石英二长岩和花岗岩,稍晚出现碱性岩类,而与矿化有关的岩石都是辉石闪长岩类(陈毓川等,1978)。

另外,Creaser(1996)和Pollard等(1998)注意到在同一时间的花岗岩组合中具有镁铁质岩和超镁铁质岩,甚至有些与铜镍硫化物矿化有关。他们认为这些幔源岩浆可能对花岗质岩浆在下地壳源区部分熔融提供了热源。Sillitoe(2003)推测相对基性的岩浆作用有利于解释在一些矿床中具有富Cu-Au-Co-Ni-As-Mo-U元素组合。

五、矿体形态特征及围岩蚀变

矿体形态是一定成矿作用的产物,在某种程度可以反映出其形成过程。但IOCG矿体的形态变化很大,可能与其宽泛的定义有关。总体上,IOCG矿床是一种后生矿床,其矿体形态可以分为断裂脉状、筒状、板状、层状(或Manto矿体)和不规则状。与其他矿床相比较,IOCG矿床的最大特点是广泛发育角砾岩筒矿体。例如,奥林匹克坝的主体矿体就是位于一个巨大的角砾岩筒中(Hitzman,1992);加拿大育空区的Wernecke地区的主矿体也是受控于角砾岩筒(Bell,1986);我国宁芜盆地中的凹山铁矿主矿体就是位于辉石闪长玢岩体隆起接触带的大型角砾岩筒中;瑞典基鲁纳地区40个铁-磷矿床,矿化主要呈角砾岩状,大规模的矿床是由复合类型矿化而成,脉状角砾岩筒型(包括沿层交代的角砾岩状)矿化出现在浅部,所以成矿围岩通常是火山成因的岩石。主要热液铁氧化物从下到上由磁铁矿到镜铁矿;来自深部的岩浆流体沿同源的岩墙向上运移和成矿。

图4-4 中安第斯沿海科迪勒拉IOCG矿床的类型概要图

还有层状或层控型(Bergman et al.,2001)。除了角砾岩矿床外,还有其他类型矿床,尤其是多个类型矿复合存在时,便构成大型矿床。例如,在南美安第斯成矿带中,正如Sillitoe(2003)所述,除了脉状矿体外,还有局部可见的独立存在的角砾岩筒(例如Carrilillo de las Bombas、Tersa de Colmo)和矽卡岩矿(例如San Antonio、Panulcillo和Farola等)。更加广泛出现的是各种类型的复合型(图4-4),例如,除了脉状外,还有角砾岩筒状、细网脉状,沿层交代的Manto矿体(例如超大型Candelaria-PuntadelCobre矿床)。事实上,陈毓川和李文达(1978)提出的玢岩铁矿矿床模型(图4-5)就是释注当今IOCG矿床的最好典例。从图4-5可以看出各种类型的矿体,包括有块状、角砾状和浸染状矿石组成的筒状或板状矿体,岩层交代的层状矿体(或Manto状)、沿裂隙(在岩体或围岩内)形成的脉状矿体和沿岩体接触带形成的矽卡岩型不规则矿体。

在研究早期,Hitzman等(1992)提出IOCG矿床的围岩蚀变通常是很强烈的,具体蚀变类型依赖于围岩的性质和矿化蚀变的深度。但是总体来讲,蚀变作用在深部为钠质蚀变组合,在中浅部为钾质蚀变组合,在浅部为绢云母化和硅化(图4-6)。需要指出的是,这为一个整体的理论蚀变模型,主要来自对奥林匹克坝矿床的观察和研究。在瑞典北部的基鲁纳地区矿区的围岩蚀变没有如此明显的分带现象,但Smith(2007)还是鉴定出两次钾化和两次钠化交替出现,钠长石-阳起石-磁铁矿和黑云母-钾长石-方柱石是最主要的蚀变类型。在我国的宁芜-庐枞地区的IOCG铁矿有比较清楚的蚀变分带,即:下部是磁铁矿-钠长石化带,中部磁铁矿-钠柱石-阳起石-磷灰石(-绿泥石-绿帘石)带,上部泥化、硅化和黄铁矿-明矾石-硬石膏化(陈毓川等,1978)。在大多数IOCG矿区,蚀变组合抑或以钠质蚀变为主抑或以钾质蚀变为主。尽管上述宁芜-庐枞盆地也有一些泥化和硅化,最明显或最有代表性的蚀变是钠质蚀变组合。一般来讲,以磁铁矿为主的矿化伴生以钠质蚀变为主,而以赤铁矿为主的矿化则以钾质蚀变为主。同时,在澳大利亚新昆士兰的Cluncorry地区的Lightning Creek矿区,伴随富铁矿的蚀变是钠长石-磁铁矿-石英,还可以见到钠长石呈钾长石的假象及其在磁铁矿脉的周围出现浸染状磁铁矿-单斜辉石蚀变(Perring et al.,2000)。加拿大西北大湖岩浆-成矿带中的主体蚀变就是磁铁矿-磷灰石-阳起石组合,磷灰石和阳起石也是矿体中的主要脉石矿物(Hildebrand,1986)。

图4-5 宁芜玢岩铁矿模型图

图4-6 IOCG矿床的蚀变分带的示意综合剖面图

图4-7 不同类型IOCG矿床的总体模型图

六、IOCG矿床的形成过程探讨

如前所述,对于IOCG矿床的成因有比较强烈的争论,争论的焦点在于成矿物质是否主要来源于岩浆热液。由于所有IOCG矿床与岩浆岩的时空关系非常清楚,绝大多数研究者都认同它们之间的成因联系,在找矿勘查过程中始终把辉石闪长岩和闪长岩作为找矿评价的主要标志之一。稳定同位素研究表明IOCG矿床与相关岩体具有类似的特征,例如,硫同位素值明显指示出岩浆来源(Marschik et al.,2001;Sillitoe,2003;Oliver et al.,2004),尽管在一定程度上,金属和硫可以由不同类型流体搬运,硫也可能是由流体从附近的岩体或火山岩中萃取而来。对于与IOCG矿床有关的钠(钙)蚀变的稳定同位素研究也通常表明岩浆流体为最主要来源(Perring et al.,2000;Mark et al.,2004;Oli-ver et al.,2004)。

Pollard(2001)提出在IOCG矿床系统中钠(钙)蚀变可能由类似于斑岩铜金矿岩浆中不混溶H2O-CO2-钠盐流体形成。与矿化有关的流体包裹体中普遍存在CO2也是岩浆来源的一个标志。CO2的存在可以影响硅酸盐熔融体与流体之间的碱质配分,有可能生成具高Na/K比值的卤水,这种卤水可能导致了在许多IOCG环境广泛形成钠质蚀变作用。Pollard(2006)总结提出与IOCG矿化有关的岩体可能侵位深度变化在2~15km之间(图4-7),相当多IOCG矿床形成深度比典型斑岩铜矿深得多。在这样的深度,岩体结晶过程的机械能量释放不足以像斑岩体那样在上部围岩产生破裂而形成斑岩矿床,因而流体只能沿岩体侵位前的断裂成矿或沿可交代的地层形成Manto矿床(图4-7)。除了深度控制外,矿化出现在构造的交会部位或构造与地层不整合界面(例如Candelaria)以及平推断层中的有利部位(例如Salobo),抑或沿着几条平推断层的链接部位成矿(例如Manto Verde)。在一些情况下,矿床产出在浅部,矿化发育于角砾岩筒或呈脉状(例如奥林匹克坝、Alemo,图4-7)。后者类似斑岩铜矿体系,但总体缺少石英网脉状矿化。Barton和Johnson(1996)提出“盆地蒸发岩物源模型”,认为形成IOCG矿床的流体具有高的Cl/S比值,可能为主要来自古蒸发岩的同生盆地流体,岩浆流体叠加为其次。盆地流体循环受控于下伏岩体提供热源而形成的热对流系统,盆地流体与岩浆流体混合成矿。这一模型有助于理解在IOCG矿床成矿系统中如此富集特色元素(亲铁元素和亲石元素)和热液蚀变(钠质蚀变和局部的钾质蚀变),此外,与蒸发岩反应产生贫硫的卤水与地质观察相吻合。Oliver等(2004)综合澳大利亚Cloncurry地区的矿床资料,提出下列的认识:①该区几个阶段的钠长石化先后叠加与1600~1650Ma的变质事件和与1550~1580Ma期间的William岩套侵位的热事件有关。②区内大多数IOCG矿床晚于区域变质作用,与William岩套侵位同时,因而,变质作用无法解释其成因;蒸发岩在区域变质之前或之中被消耗而形成钠长石和方柱石。③Cloncurry矿床中钠化围岩的地球化学资料反映出在蚀变过程中Na带入,Fe、K、Ba、Rb±Ca、Sr、Co、V、Mn、Pb和Zn带出。带出的元素主要富集在富铜金的铁矿石中,因此,将钠质蚀变、高盐度卤水和IOCG矿床形成联系在一起。根据上述资料和观察,Oliver等(2004)建立了Cloncurry地区矿床成因模型:①卤水在William岩套侵入体结晶时释放出;②循环卤水参与钠化反应,在反应过程中钠是固定的,原来在蚀变带和铁矿石中的其他元素(尤其是钾和钠)被带进流体;③循环的富金属卤水借助裂隙流动,与富硫围岩发生反应或与富硫的表生流体的混合,在适宜的位置,例如构造膨大处,沉淀成矿(图4-8)。

图4-8 澳大利亚昆士兰Cloncurry地区IOCG矿床的变质成矿模型

Barton和Johnson(2004)通过总结研究IOCG矿床的成矿过程,提出岩浆与非岩浆两种成因模型(图4-9)。又进一步将非岩浆成因模型分为:地表或浅部盆地流体模型和变质流体模型。这两种非岩浆模型都需要能提供非岩浆氯化物的专属环境。在前一种模型中,侵入体的主要作用是驱动非岩浆卤水的热对流。流体的含盐性可能来自经历了蒸发作用的地表水(温暖、干旱环境),或来自循环水与先存蒸发盐沉积物的相互作用。与IOCG矿床有关的热液活动被认为发生在中地壳深度。变质模式不需要火成热源,尽管同期侵入体可能存在并且向流体提供了热量和组分(例如Fe和Cu)。

图4-9 IOCG矿床流体特征和流经途径综合性模型

总体而言,从目前的研究来看,绝大多数IOCG矿床都与岩浆活动关系密切,非岩浆模型可能适于解释个别矿床成因或某一矿床的局部现象,是岩浆成矿模型的补充。从岩浆分异出的流体在运移过程或多或少都必将与其他来源的流体混合,包括盆地流体、大气水、古建造水、变质流体或地幔流体。由于蒸发盐层在诸多盆地存在,一旦上侵岩浆吞食这些膏盐层或岩浆流体与之发生反应,必将有助于形成大型或高品位的贫硫富钠的IOCG矿床。到目前为止,尚未见有关变质流体形成IOCG矿床的报道,仅仅限于理论推测。

七、找矿评价标志与勘查

铁氧化物铜金矿(IOCG)概念的提出不仅受到学术界的积极响应,而且更加受到工业界的高度重视,目前已经成为近年来寻找铜金矿的重要目标。尽管把许多过去认为关系不大的一些矿床放到一起颇受争议,但是越来越多的地质勘查工作者却认为这是一种找矿的新思路。这一概念给人们的最大启示是在一定的地质环境中,铁铜金可以密切共生,当发现一种矿产时,可能在一定部位找到其他矿产,而且还可能找到钴、镍、钼、铀和稀土金属矿产,甚至铋和砷。对于这类型矿床的勘查标志和有效的找矿方法正在积累之中,目前,主要有以下几种:

1)IOCG矿床一般出现在大陆边缘伸展带(包括弧后裂谷和造山带中的局部伸展带)和大陆裂谷带;

2)以大量的铁氧化物(包括磁铁矿和/或赤铁矿)发育为特征,在大多数矿床中含有铜铁硫化物和金矿化,但像基鲁纳这类矿床中通常不含铜和金。一旦矿体中有硫化物发育,不仅存在铜金,而且Co-Ni-As-Mo-U-LREE等都可能成为可以利用的有用组分。

3)无论是起到物质源和/或能源作用,岩浆岩是成矿的一个重要条件,与成矿有关的岩体通常具有橄榄安粗岩性质,主要岩性为闪长岩、辉石闪长岩和花岗闪长岩,也有花岗岩。

4)破碎的火山岩或火山碎屑岩为成矿围岩时,由于其高渗透性,有利于形成大型复合性质的IOCG矿床,尤其是当有深穿透补给断裂存在时更佳。高角度或低缓角度断层或剪切带也能起到构造渗透作用。

5)围岩蚀变发育,最基本特点是钠化和钾化。钠化以钠长石-磷灰石-阳起石-方柱石(或钠柱石)-绿泥石-磁铁矿为特征,钾化则以钾长石-绢云母-黑云母-碳酸盐岩为特征。在大多数矿床中抑或以钠化为主抑或以钾化为主,在个别矿床中两种蚀变同时发育,而且有下部钠化、上部钾化的空间分布规律性。

6)在辉长闪长岩体或闪长岩体接触带广泛强烈发育接触热变质角岩带和接触交代岩(钠-钙质或钾质蚀变)带是大型复合性质IOCG矿床的很好的指示剂。

7)矿化热液角砾和交代磁铁矿形成大量镜铁矿指示出比较浅的古深度,所以在深部可能存在IOCG矿床。广泛发育的磁铁矿-阳起石组合表明IOCG矿床相对较深,在深部发现具有经济价值的铜金矿的可能性较小。

8)粗晶方解石和铁白云石通常出现在IOCG矿床的顶部或最远离主矿体的部位。在某些情况下,黄铁矿晕可能指示出IOCG矿体的存在。

9)由于IOCG矿床富含铁氧化物,常常缺少硫化物或硫化物含量低,因此,地球物理是找矿评价的有效手段,尤其是在隐伏矿区,使用磁法和重力手段效果最好。成矿区的磁场和重力效应明显,具有重力高、中等到高强度磁异常为标志。

八、对我国IOCG矿床研究的点滴思考

正如前述,尽管国际上研究IOCG矿床如火如荼,我国则刚开始。除了长江中下游地区宁芜和庐枞两个盆地中广泛发育的比较典型的IOCG铁矿床(确切为基鲁纳式或玢岩铁矿式)外,还有很多矿床,例如海南省的石碌铁(铜钴)矿、新疆的雅满苏铁(铜)矿和蒙库铁(铜)矿等值得重新思考,通过研究其形成过程,厘定成因类型,建立相应的矿床模型,推动进一步找矿评价和勘查工作的开展。尽管在提出IOCG矿床概念的初期Hitzman等(1992)就将白云鄂博列为典型的IOCG矿床,但是,这一划分一开始就遇到争议。虽然白云鄂博矿床以富有磁铁矿和LREE为特征,但其本身特征比较清楚地表明与地幔过程(抑或与碳酸岩浆抑或与地幔流体交代有关)关系密切。河北邯邢铁矿和湖北大冶铁矿是比较标准的矽卡岩型铁矿,但是也有某些IOCG矿床的特点,例如,在深部发现铜矿体或硫矿体,除了矽卡岩矿体外还有角砾岩筒矿体、强烈钠-钙化蚀变作用以及地层中膏盐层对成矿的贡献等。与国外同类研究类似,如何正确厘定IOCG矿床与矽卡岩型矿床是一个挑战性的科学问题。可以相信,通过从IOCG矿床角度的深入解剖研究,很多问题将会得到合理的解决。只有合理地建立更加符合客观规律的矿床模型,才能有效地推动矿产勘查工作。

温馨提示:答案为网友推荐,仅供参考
相似回答