不定积分∫tanxdx等于什么?

如题所述

∫tanxdx=∫(sinx/cosx)dx 令cosx=t,则dt=dcosx=-sinxdx--->dx=-dt/sinx 因此∫tanxdx =-∫dt/t =-ln|t|+C =-ln|cosx|+C.

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。

扩展资料

定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

参考资料百度百科-不定积分

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜