线代矩阵的秩

如题所述

秩是线性代数术语,在线性代数中,一个矩阵A的列秩是A的线性无关的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。
矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为 rk(A) 或 rankA。
m×n矩阵的秩最大为m和n中的较小者。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足的。
拓展资料:
用向量组的秩定义
向量组的秩:在一个m维线性空间E中,一个向量组的秩表示的是其生成的子空间的维度。考虑m×n矩阵,将A的秩定义为向量组F的秩,则可以看到如此定义的A的秩就是矩阵A的线性无关纵列的极大数目,即A的列空间的维度(列空间是由A的纵列生成的F的子空间)。因为列秩和行秩是相等的,我们也可以定义A的秩为A的行空间的维度。
用线性映射定义
考虑线性映射:
对于每个矩阵A,fA都是一个线性映射,同时,对每个的 线性映射f,都存在矩阵A使得f=fA。也就是说,映射是一个同构映射。所以一个矩阵A的秩还可定义为fA的像的维度(像与核的讨论参见线性映射)。矩阵A称为fA的变换矩阵。这个定义的好处是适用于任何线性映射而不需要指定矩阵,因为每个线性映射有且仅有一个矩阵与其对应。秩还可以定义为n减f的核的维度;秩-零化度定理声称它等于f的像的维度。
计算矩阵A的秩的最容易的方式是高斯消去法。高斯算法生成的A的行梯阵形式有同A一样的秩,它的秩就是非零行的数目。
例如考虑 4 × 4 矩阵
我们看到第 2 纵列是第 1 纵列的两倍,而第 4 纵列等于第 1 和第 3 纵列的总和。第1 和第 3 纵列是线性无关的,所以A的秩是 2。这可以用高斯算法验证。它生成下列A的行梯阵形式:
它有两个非零的横行。
在应用在计算机上的浮点数的时候,基本高斯消去(LU分解)可能是不稳定的,应当使用秩启示(revealing)分解。一个有效的替代者是奇异值分解(SVD),但还有更少代价的选择,比如有支点(pivoting)的QR分解,它也比高斯消去在数值上更强壮。秩的数值判定要求对一个值比如来自 SVD 的一个奇异值是否为零的依据,实际选择依赖于矩阵和应用二者。
计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组有解。在这种情况下,如果它的秩等于方程(未知数)的数目,则方程有唯一解;如果秩小于未知数个数,则有无穷多个解。
温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜