有黑洞吗

如题所述

温馨提示:答案为网友推荐,仅供参考
第1个回答  2019-02-20

科学家们以爱因斯坦广义相对论,预言了一种叫作”黑洞“的天体,你知道什么是”黑洞“吗?

第2个回答  2008-07-30
有的!

黑洞的一些介绍:

银河系的中心——黑洞!
北京时间9月18日消息 据国外媒体报道,美国国家航空航天局日前宣布,天文学家们在紧邻银河系中心的区域发现了数十颗庞大而且非常明亮的恒星。
这一发现让专家们感到万分惊奇:要知道在银河系的中央存在着一个巨型黑洞,此前流行的理论认为,在黑洞附近是不可能存在任何天体的。
能够发现这些恒星还要感谢美国的“钱德拉”X射线太空望远镜。它们距离银河系的中心区域只有95亿公里(小于1光年)。要补充的是,地球到银河系中心黑洞的距离大约为2.6万光年。
此次发现的这批恒星的体积大约是太阳的30-50倍,亮度则达到了后者100倍。天文学家们认为,这些恒星可能会发展为超巨星并发生爆炸。随后,它们将在自身巨大引力的作用下发生收缩、塌陷,最终会演变为一群小型的黑洞。
通常情况下,身处黑洞附近的天体均会逐渐地被黑洞所吞噬,并最终消失的无影无踪。从事恒星研究的科学家们猜测,此次在银河系中央黑洞附近发现的恒星可能形成了一个独特的环形结构,其中包含有各种天体。
天文学家们认为,巨型黑洞均处于各个星系的中央部位。
众所周知,包括恒星在内的任何物质一旦陷入黑洞的引力场都会消失的无影无踪。但是科学家们新近的这一重大发现却表明,围绕在黑洞周围一定距离上的盘状气态物质也有可能演化为恒星。

【黑洞趣事】 在你阅读以下关于黑洞的复杂科学知识以前,先知道两个发生在黑洞周围的两个有趣现象。
■趣事一:变化着的时间
根据广义相对论,引力越强,时间越慢。引力越小,时间越快。我们的地球因为质量较小,从一个地方到另一个地方,引力变化不大,所以时间差距也不大。比如说,喜马拉雅山的顶部和山底只差几千亿之一秒。黑洞因为质量巨大,从一个地方到另一个地方,引力变化非常巨大,所以时间差距也巨大。如果喜马拉亚山处在黑洞周围,当一群登山运动员从山底出发,比如说他们所处的时间是2005年。当他们登顶后,他们发现山顶的时间是2000年。
=========================================================================
【黑洞趣事】中的第一项明显是与广义相对论和量子力学相悖的,如果在黑洞附近有一喜玛拉雅山,登顶的时间是9.326X10的32次方年,而且时间只能向前,不能倒退.无论是爱因斯坦的广义相对论还是其它理论,时间都是无法倒流的,只能向前,就是说如果有时间飞船可坐,我们可以到未来任何时间,比如到公元3000年,但这是单程票,去了就回不来了。
■趣事二:假如银河系被黑洞吸收
另外一个有趣的现象也是根据广义相对论,引力越强,时间越慢,物体的长度也缩小。假如银河系被一个黑洞所吸引,在被吸收的过程中,银河系会变成一个米粒大小的东西。银河系里的一切东西包括地球都按相同比例缩小。所以在地球上的人看来,银河系依旧是浩瀚无边。地球上的人依旧照常上班学习,跟他们在正常情况下一样。因为在他们看来,周围的人和物体和他们的大小比例关系不变。他们浑然不知这一切都发生一个米粒大的世界里。
但因为黑洞周围引力巨大,任何物体都不能长时间待留。假如银河系被一个黑洞所吸引,地球上的人只有几秒的时间去体验第一个现象.

【黑洞的吸积
黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。

天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星——包括地球——也是在新形成的恒星周围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。

然而黑洞并不是什么都吸收的,它也往外边散发质子.

【黑洞的密度】
黑洞是密度超大的星球,吸纳一切,光也逃不了.(现在有科学家分析,宇宙中不存在黑洞,这需要进一步的证明,但是我们在学术上可以存在不同的意见)
补注:在空间体积为无限小(可认为是0)而注入质量接近无限大的状况下,场无限强化的情况下黑洞真的还有实体存在吗?
或物质的最终结局不是化为能量而是成为无限的场?
发生在黑洞周围的有趣现象
在你阅读以下关于黑洞的复杂科学知识以前,先知道两个发生在黑洞周围的两个有趣现象。根据广义相对论,引力越强,时间越慢。引力越小,时间越快。我们的地球因为质量较小,从一个地方到另一个地方,引力变化不大,所以时间差距也不大。比如说,喜马拉雅山的顶部和山底只差几千亿之一秒。黑洞因为质量巨大,从一个地方到另一个地方,引力变化非常巨大,所以时间差距也巨大。如果喜马拉亚山处在黑洞周围,当一群登山运动员从山底出发,比如说他们所处的时间是2005年。当他们登顶后,他们发现山顶的时间是2000年。
另外一个有趣的现象是根据广义相对论,引力越强,时间越慢,物体的长度也缩小。假如银河系被一个黑洞所吸引,在被吸收的过程中,银河系会变成一个米粒大小的东西。银河系里的一切东西包括地球都按相同比例缩小。所以在地球上的人看来,银河系依旧是浩瀚无边。地球上的人依旧照常上班学习,跟他们在正常情况下一样。因为在他们看来,周围的人和物体和他们的大小比例关系不变。他们浑然不知这一切都发生一个米粒大的世界里。
旦因为黑洞周围引力巨大,任何物体都不能长时间待留。假如银河系被一个黑洞所吸引,地球上的人只有几秒的时间去体验第一个现象。

【黑洞的形成】
跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。
当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。
质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。
这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积很小、密度趋向很大。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

【黑洞的产生】
黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样.

亦可以简单理解:通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生裂变、聚变。由于恒星质量很大,裂变与聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定。由于裂变与聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素。接着,氦原子也参与裂变与聚变,改变结构,生成锂元素。如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成。直至铁元素生成,该恒星便会坍塌。这是由于铁元素相当稳定不能参与裂变或聚变,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞。

跟白矮星和中子星一样,黑洞很可能也是由质量大于太阳质量20倍的恒星演化而来的。

当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。
这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积很小、密度趋向很大。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

根据科学家计算,一个物体要有每秒中七点九公里的速度,就可以不被地球的引力拉回到地面,而在空中饶着地球转圈子了.这个速度,叫第一宇宙速度.如果要想完全摆脱地球引力的束缚,到别的行星上去,至少要有11.2km/s的速度,这个速度,叫第二宇宙速度.也可以叫逃脱速度.这个结果是按照地球的质量和半径的大小算出来的.就是说,一个物体要从地面上逃脱出去,起码要有这么大的速度。可是对于别的天体来说,从它们的表面上逃脱出去所需要的速度就不一定也是这么大了。一个天体的质量越是大,半径越是小,要摆脱它的引力就越困难,从它上面逃脱所需要的速度也就越大.

按照这个道理,我们就可以这样来想:可能有这么一种天体,它的质量很大,而半径又很小,使得从它上面逃脱的速度达到了光的速度那么大。也就是说,这个天体的引力强极了,连每秒钟三十万公里的光都被它的引力拉住,跑不出来了。既然这个天体的光跑不出来,我们然谈就看不见它,所以它就是黑的了。光是宇宙中跑得最快的,任何物质运动的速度都不可能超过光速.既然光不能从这种天体上跑出来,当然任何别的物质也就休想跑出来.一切东西只要被吸了进去,就不能再出来,就象掉进了无底洞,这样一种天体,人们就把它叫做黑洞.

我们知道,太阳现在的半径是七十万公里。假如它变成一个黑洞,半径就的大大缩小.缩到多少?只能有三公里.地球就更可怜了,它现在半径是六千多公里.假如变成黑洞,半径就的缩小到只有几毫米.那里会有这么大的压缩机,能把太阳 地球缩小的这么!这简直象<天方夜谭>里的神话故事,黑洞这东西实在太离奇古怪了。但是,上面说的这些可不是凭空想象出来的,而是根据严格的科学理论的出来的.原来,黑洞也是由晚年的恒星变成的,象质量比较小的恒星,到了晚年,会变成白矮星;质量比较大的会形成中子星.现在我们再加一句,质量更大的恒星,到了晚年,最后就会变成黑洞.所以,总结起来说,白矮星 中子星和黑洞,就是晚年恒星的三种变化结果.

现在,白矮星已经找到了,中子星也找到了,黑洞找到没有?也应该找到的.主要因为黑洞是黑的,要找到它们实在是很困难。特别是那些单个的黑洞,我们现在简直毫无办法。有一种情况下的黑洞比较有希望找到,那就是双星里的黑洞.
双星就是两颗互相饶着转的恒星.虽然我们看不见黑洞,但却能从那颗看的见的恒星的运动路线分析出来.这是什么道理呢?因为,双星中的每一个星都是沿着椭圆形路线运动的,而单颗的恒星不是这样运动。如果我们看到天空中有颗恒星在沿椭圆形路线运动,却看不到它的'同伴',那就值得仔细研究了。我们可以把那颗星走的椭圆的大小,走完一圈用的时间,都测量出来.有了这些,就可以算出来那个看不见的'同伴'的质量有多大。如果算出来质量很大,超过中子星能有的质量,那就可以进一步证明它是个黑洞了。

在天鹅星座,有一对双星,名叫天鹅座X-1.这对双星中,一颗是看的见的亮星,另一颗却看不见.根据那可亮星的运动路线.可以算出来它的'同伴'的质量很大,至少有太阳质量的五倍.这么大的质量是任何中子星都不可能有的.当然,除这些以外还有别的证据。所以,基本上可以肯定,天鹅座X-1中那个看不见的天体就是一个黑洞.这是人类找到的第一个黑洞。
另外,还发现有几对双星的特征也跟天鹅座X-1很相似,它们里面也有可能有黑洞。科学家正对它们作进一步的研究. “黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

【黑洞的蒸发】
由于黑洞的密度极大,根据公式我们可以知道密度=质量÷体积,为了让黑洞密度无限大,那就说明黑洞的体积要无限小,然后质量要无限大,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,他的质量很大,体积很小。但是问题就产生了,黑洞会一直存在吗?答案是错误的,黑洞也有灭亡的那天,由于黑洞无限吸引,但是总会有质子逃脱黑洞的束缚,这样日积月累,黑洞就慢慢的蒸发,到了最后就成为了白矮星,或者就爆炸,它爆炸所产生的冲击波足以让地球毁灭1万次以上。科学家经常用天文望远镜观看黑洞爆炸的画面。它爆炸所形成的尘埃是形成恒星的必要物质,这样就能初步解决太阳系形成的答案了。

【巨大黑洞】
所谓“巨大黑洞”是指质量超过太阳100万倍以上的黑洞。如果存在巨大黑洞,那么在它周围的物质亦应当像绕太阳旋转的行星那样,遵循“开普勒行星运动三定律”,哈勃太空望远镜就在NGC4261、室女座M84星系、室女座M87星系等星系中心发现了高速旋转的气体。
根据开普勒定律,气体的旋转速度应与其围绕天体的质量的平方根成正比,与旋转半径的平方根成反比。如果能够确定旋转速度和半径,就能求出哪个天体的质量,NGC4261旋转半径为300光年以内,质量约为太阳质量的20亿倍;M84星系旋转半径为30光年以内,质量约为太阳质量的3亿倍;M87星系旋转半径为15光年以内,质量约为太阳质量的30亿倍。计算结果应当是令人吃惊的!10亿倍太阳质量的黑洞的半径大约为10天文单位,也就是1光年的一万分之一。所以,哈勃太空望远镜的观测结果与黑洞的半径相比较,还没有把握住黑洞的外侧。
1995年,有关科学家与美国史密森尼安天文台合作,使用超长基线电波干涉仪群观测猎犬NGC4258星系的中心区域,发现在NGC4258星系中心仅0.3光年的区域内,就存在相当太阳质量3600万倍的质量,而且获得了迄今为止最精确的旋转速度。由此,星系中心存在巨大黑洞的可能几乎转瞬间便具有了可能性。同年,科学家们进行了对确认巨大黑洞具有决定意义的观测,证据是通过日本的X射线天文卫星观测得到的,观测对象是名为“MCG-6-30-15”的一个活跃星系。观测结果表明,来自这个星系中心的X射线发生了“引力红移”,这是非黑洞无法解释的。
所谓“引力红移”是在强引力作用下,时间似乎变慢的可用广义相对论解释的现象,在这种现象中光波长变长。这个现象被确认其意义就相当于直接观测到黑洞。科学家从此得到了巨大黑洞存在的强有力的证据,任何星系都存在巨大黑洞。

黑洞的模样:

http://image.baidu.com/i?ct=503316480&z=0&tn=baiduimagedetail&word=%BA%DA%B6%B4&in=29098&cl=2&cm=1&sc=0&lm=-1&pn=95&rn=1&di=1398391121&ln=2000

http://image.baidu.com/i?ct=503316480&z=0&tn=baiduimagedetail&word=%BA%DA%B6%B4&in=10675&cl=2&cm=1&sc=0&lm=-1&pn=23&rn=1&di=1745594500&ln=2000
第3个回答  2020-02-14
黑洞是有的。
美国天文学家发现了一个源自127亿年前的黑洞,不过这个黑洞距离地球非常遥远,这也是为什么这么久都没被发现的原因,它是在宇宙大爆炸之后的1亿年形成的。但是有一点是所有科学家很迷惑的,是什么力量让这个宇宙黑洞在这么“短”的时间内就形成了这么大质量的黑洞的。
这个宇宙黑洞是目前全世界发现的最古老的宇宙黑洞,已经有天文科学家把它命名为了Q0906+6930,它的质量几乎达到了整个银河系下的恒星质量之和,而它的容量几乎可以装下1000个太阳系。这个黑洞形成的时间非常远古,几乎是跟宇宙是并存的,仅仅比宇宙晚形成那么几亿年“而已”,像它这样大容量的黑洞,又这么的古老,真的非常罕见。
宇宙黑洞只是一个模糊的概念,它既看不到也摸不到,只能通过X射线和伽马射线来确定它的存在和测量它的体积和质量。但是现在对于这个宇宙黑洞的数据都是估量值,现在已经有一些天文专家准备利用它周围的天体的X射线和伽玛射线来精确测量一下它的精确数据。
来自百度百科。宇宙黑洞
第4个回答  2008-08-12
据天文学家观测,宇宙中有一个奇怪的天体,它的引力极强,连速度最快的光也休想从它那里逃脱,所以人们看不见它,称它为黑洞。
黑洞并不是实实在在的星球,而是一个几乎空空如也的天区。黑洞又是宇宙中物质密度最高的地方,地球如果变成黑洞,只有一颗黄豆那么大。原来,黑洞中的物质不是平均分布在这个天区的,而是集中在天区的中心。这些物质具有极强的引力,任何物体只能在这个中心外围游弋。一旦不慎越过边界,就会被强大的引力拽向中心,最终化为粉末,落到黑洞中心。因此,黑洞是一个名副其实的太空魔王。
黑洞内部所以有这么强大的引力,这和它的形成有关。一颗质量超过太阳20倍以上的恒星,经过超新星爆发后,剩余部分的质量一般仍要超过太阳质量的2 倍以上。这部分物质自身引力非常强大,从而发生急剧坍缩。尽管在坍缩过程中内部也会产生一些抵抗坍缩的压力,但在如此强大的引力面前,无异于螳臂挡车。随着坍缩加剧,分子、原子乃至原子核都会被挤破,最终形成极高密度的引力中心。
黑洞既然看不见摸不着,天文学家又是怎样发现和观察它的呢? 这主要是通过黑洞区强大的X射线源进行探索的。黑洞本身虽然不能发出任何光线,但它对于周围物体、天体的巨大引力依然存在。当周围物质被它强大的引力所吸引而逐渐向黑洞坠落时,就会发射出强大的X射线,形成天空中的X 射线源。通过对X射线源的搜索观测,人们就可找到黑洞的踪迹。本回答被提问者采纳
相似回答