应用导数证明恒等式,arcsinx+arccosx=二分之派(-1≦x≦1)

如题所述

f(x)=arcsinx+arccosx在[-1,1]连续,在(-1,1)可导,由拉格朗日中值定理 一定在[-1,1]中找到一个c点 使得 f(c)=[f(1)-f(-1)]/(1-(-1)) 又这个式子可以计算得π/2
该定理的推论是:如果函数f(x)在区间I上的导数恒为零,则f(x)在区间I上是一个常数
(arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2
所以f'(x)=0 得证追答

证明恒等式;arcsinx+arccosx=π/2 (-1≤x≤1)

证明:
设 arcsinx = u, arccosx = v ,(-1≤x≤1),
则 sinu=x,cosu=√[1-(sinu)^2]=√[1-x^2],
cosv=x,sinv=√[1-(cosv)^2]=√[1-x^2],
左边=arcsinx+arccosx=
=sin(u+v)=sinuconv+conusinv=
=x^2+√[1-x^2]√[1-x^2]=
=x^2+1-x^2=
=1,
右边=sin(π/2)=1,
因为 左边=右边,故
arcsinx+arccosx=π/2 成立,(-1≤x≤1)。

温馨提示:答案为网友推荐,仅供参考
相似回答