Chord协议的路由算法

如题所述

第1个回答  2016-06-04

Chord在一致性哈希的基础上提供了优化的路由算法:
在Chord中,每个节点同样需要存储m个其他节点的信息,这些信息的集合被称为查询表(Finger Table)。一致性哈希中的节点同样具有这样的表格,但在Chord中,表格中的节点不再是直接相邻的节点,它们的间距(ID间隔)将成2i 的关系排列(i 表示表中的数组下标)。这样形成的节点之间路由关系实际上就是折半查找算法需要的排列关系。
在查询的过程中,查询节点将请求发送到与键值最接近的节点上。收到查询请求的节点如果发现自身存储了被查询的信息,可以直接回应查询节点(这与一致性哈希完全相同);如果被查询的信息不在本地,就根据查询表将请求转发到与键值最接近的节点上。这样的过程一直持续到找到相应的节点为止。不难看出,查询过程实际上就是折半查找的过程。
经过Chord的优化后,查询需要的跳数由O ( N)减少到O(log(N))。这样即使在大规模的P2P网络中(例如N=100,000,000),查询的跳数也仅为O(8),每个节点仅需存储27个(log2100000000)其他节点的信息。
Chord还考虑到多个节点同时加入系统的情况并对节点加入/退出算法作了优化。
Chord算法本身具有如下优点:
负载平衡
这一优点来自于一致性哈希,也就是一致性哈希中提到的平衡性。所有的节点以同等的概率分担系统负荷,从而可以避免某些节点负载过大的情况。
分布性
Chord是纯分布式系统,节点之间完全平等并完成同样的工作。这使得Chord具有很高的鲁棒性,可以抵御DoS攻击。
可扩展性
Chord协议的开销随着系统规模(结点总数N)的增加而按照O(logN)的比例增加。因此Chord可以用于大规模的系统。
可用性
Chord协议要求节点根据网络的变化动态的更新查询表,因此能够及时恢复路由关系,使得查询可以可靠地进行。
命名的灵活性
Chord并未限制查询内容的结构,因此应用层可以灵活的将内容映射到键值空间而不受协议的限制。
Chord在CFS系统中得到了应用,具体的介绍可参见[8]

相似回答