设二维随即变量(X,Y)的联合密度为p(x,y)=8xy 0

如题所述

第1个回答  2022-10-04
X的边缘概率密度为: fX(x)=∫(0→x)8xydy=4x^3;
Y的边缘概率密度为: fY(y)=∫(y→1)8xydx=4y(1-y^2);
E(X)=∫(0→1)xfX(x)dx=4/5;
E(X^2)=∫(0→1)x^2fX(x)dx=2/3;
D(X)=E(X^2)-(E(X))^2=2/75;
E(Y)=∫(0→1)yfY(y)dy=8/15;
E(Y^2)=∫(0→1)y^2fY(y)dy=1/3;
D(Y)=E(Y^2)-(E(Y))^2=11/225;
令Z=XY,则Z的分布函数为F(z)=∫(0→√z)∫(0→x)(8xy)dydx+∫(√z→1)∫(0→z/x)(8xy)dydx,即:
F(z)=z^2-2z^2lnz,所以,Z的概率密度为f(z)=dF(z)/dz=-4zlnz,所以:
E(XY)=E(Z)=∫(0→1)zf(z)dz =4/9;
所以:Cov(X,Y)=E(XY)-E(X)E(Y) =4/9-(4/5)(8/15)=4/225;
相关系数为ρ(X,Y)=Cov/√(D(X)D(Y)) =4/√66
相似回答
大家正在搜